Thứ sáu, 22/11/2024
IMG-LOGO
Trang chủ Lớp 7 Toán Trắc nghiệm Một số bài toán về đại lượng tỉ lệ thuận có đáp án

Trắc nghiệm Một số bài toán về đại lượng tỉ lệ thuận có đáp án

Trắc nghiệm một số bài toán về đại lượng tỉ lệ thuận có đáp án (Vận dụng)

  • 1428 lượt thi

  • 12 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Ba tấm vải dài tổng cộng 420m. Sau khi bán 17  tấm vải thứ nhất, 211 tấm vải thứ hai và 13 tấm vải thứ ba thì chiều dài còn lại của ba tấm bằng nhau. Hỏi tấm vải thứ hai dài bao nhiêu mét?

Xem đáp án

Gọi lần lượt x;y;z là độ dài của ba tấm vải ban đầu (0 < x;y;z< 420)

Sau khi bán 17 tấm vải thứ nhất thì độ dài của tấm vải thứ nhất còn

x - 17x =67 (m)

Sau khi bán 211 tấm vải thứ nhất thì độ dài của tấm vải thứ hai còn

y211y=9y11

Sau khi bán 13 tấm vải thứ nhất thì độ dài của tấm vải thứ ba còn

z13z=2z3

Sau khi bán thì độ dài còn lại của ba tấm vải bằng nhau nên ta có:

6x7=9y11=2z3

6y7.18=9y11.18=2z3.18x21=y22=z27

Tổng độ dài ba tấm vải ban đầu là 420 nên x+y+z=420

Áp dụng tính chất dãy tỉ số bằng nhau ta có: x21=y22=z27=x+y+z21+22+27=42070=6

Suy ra y22=6 nên y = 6.22 = 132 (TM)

Vậy tấm vải thứ hai dài 132 mét

Đáp án cần chọn là D


Câu 2:

Tìm số tự nhiên có ba chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ với 1;2;3

Xem đáp án

Gọi ba chữ số của số phải tìm là a,b,c

(a,b,cN;a,b,c9;a0)

Ta có: 1a+b+c27

Số phải tìm là bội của 18 nên số đó chia hết cho 9 , do đó a+b+c= 9 hoặc a+b+c = 18 hoặc a+b+c=27

Theo đề bài, các chữ số của số đó tỉ lệ với 1;2;3 nên a1=b2=c3

Áp dụng tính chất dãy tỉ số bằng nhau ta có: a1=b2=c3=a+b+c1+2+3=a+b+c6(1)

Suy ra a=a+b+c6(aN) nên (a+b+c)6, do đó a+b+c = 18

Thay a+b+c = 18 vào (1) ta được

a1=b2=c3=186=3

a=2;b=6;c=9

Lại có số phải tìm là bội của 18 nên chữ số hàng đơn vị của nó là số chẵn, do đó có hai số thỏa mãn đề bài là 396;936

Đáp án cần chọn là C


Câu 3:

Chia 195 thành ba phần tỉ lệ thuận với 35; 134 ; 910  . Khi đó phần lớn nhất số:

Xem đáp án

Chia133 thành ba phần x;y;z(0<x;y;z<195) với tỉ lệ 35; 134; 910

Ta có: x35=y134=z910x35=y74=z910 và x+y+z =195

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x35=y74=z910=x+y+z35+74+910=195134=60

Do đó : x=60.35=36;y=60.74=105;z=60.910=54

Phần lớn nhất là 105

Đáp án cần chọn là B


Câu 4:

Biết độ dài ba cạnh của một tam giác tỉ lệ thuận với 3 ;5;7 .  Biết tổng  độ dài của cạnh lớn nhất và cạnh nhỏ nhất lớn hơn cạnh còn lại là 20m . Tính cạnh nhỏ nhất của tam giác

Xem đáp án

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x3=y5=z7

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x3=y5=z7=x+yz35+7=205=4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B


Câu 5:

Biết độ dài ba cạnh của một tam giác tỉ lệ thuận  với 3 ;4;5 .  Biết tổng  độ dài của cạnh lớn nhất và cạnh nhỏ nhất lớn hơn cạnh còn lại là 16m . Tính cạnh nhỏ nhất của tam giác

Xem đáp án

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3;4;5  ta có: x3=y4=z5

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x3=y4=z5=x+yz34+5=164=4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B


Câu 6:

Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3,5,7 .  Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu

Xem đáp án

Gọi x,y,z là số tiền thưởng của ba công nhân lần lượt  (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3;4;7  ta có: x3=y5=z7 và x+ y = 5,6

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x3=y5=z7=x+y3+5=5,68=0,7(1)

Lại có: x3=y5=z7=x+y+z3+5+7=x+y+z15(2)

Từ (1) và (2) suy ra x+y+z15=0,7x+y+z=10,5

Tổng số tiền thưởng của ba người là 10,5 triệu

Đáp án cần chọn là C


Câu 7:

Ba công nhân A,B,C có năng suất lao động tương ứng tỉ lệ với 2,4,6 .  Tính số tiền A được thưởng nếu biết tổng số tiền thưởng của ba người là 15 triệu

Xem đáp án

Gọi x,y,z là số tiền thưởng của ba công nhân lần lượt  (15>x,y,z > 0)

Vì năng suất lao động tương ứng tỉ lệ với 2;4;6 nên số tiền thưởng cũng tỉ lệ thuận với 2;4;6 

Ta có: x2=y4=z6 và x+y+z=15

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x2=y4=z6=x+y+z2+4+6=1512=1,25

Suy ra: x = 1,25.2 = 2,5 (triệu đồng)

Số tiền người A được thưởng là 2,5 triệu đồng

Đáp án cần chọn là C


Câu 8:

Ba đơn vị cùng vận chuyển 772 tấn hàng . Đơn vị A có 12 xe,  trọng tải mỗi xe là 5 tấn. Đơn vị B có 14 xe , trọng tải mỗi xe là 4,5 tấn. Đơn vị C có 20 xe là 3,5 tấn. Hỏi đơn vị B đã vận chuyển bao nhiêu tấn hàng ,  biết rằng mỗi xe được huy dộng một số chuyến như nhau?

Xem đáp án

Mỗi lượt huy động xe, các đơn vị vận chuyển một khối lượng hàng tương ứng là:

+ Đơn vị A: 12.5=60tấn

+ Đơn vị B: 14.4,5=63 tấn

+ Đơn vị C: 20.3,5=70 tấn

Vì số lượt huy động xe là như nhau nên khối lượng hàng vận chuyển được của ba đơn vị tỉ lệ thuận với khối lượng hàng  của các đơn vị vận chuyển được trong mỗi lượt huy động.

Gọi x,y,z  (x,y,z > 0) lần lượt là số tấn hàng các đơn vị A, B, C vận chuyển được ta có:

x60=y63=z70  và x+y+z =772

Áp dụng tính chất dãy tỉ số bằng nhau ta có

x60=y63=z70=x+y+z60+63+70=772193=4

Do đó : y = 63.4 = 252 tấn

Vậy đơn vị B đã vận chuyển 252 tấn hàng

Đáp án cần chọn là D


Câu 9:

Ba đơn vị cùng vận chuyển 685 tấn hàng . Đơn vị A có 8 xe,  trọng tải mỗi xe là 4 tấn. Đơn vị B có 10 xe , trọng tải mỗi xe là 5 tấn. Đơn vị C có 10 xe là 4,5 tấn. Hỏi đơn vị B đã vận chuyển bao nhiêu tấn hàng ,  biết rằng mỗi xe được huy dộng một số chuyến như nhau

Xem đáp án

Mỗi lượt huy động xe, các đơn vị vận chuyển một khối lượng hàng tương ứng là:

+ Đơn vị A: 8.4 = 32 tấn

+ Đơn vị B: 12.5 = 60 tấn

+ Đơn vị C: 10.4,5 = 45 tấn

Vì số lượt huy động xe là như nhau nên khối lượng hàng vận chuyển được của ba đơn vị tỉ lệ thuận với khối lượng hàng  của các đơn vị vận chuyển được trong mỗi lượt huy động.

Gọi x,y,z  (x,y,z > 0) lần lượt là số tấn hàng các đơn vị A, B, C vận chuyển được ta có:

x32=y60=z45 và x+y+z = 685

Áp dụng tính chất dãy tỉ số bằng nhau ta có x32=y60=z45=x+y+z32+60+45=685137=5

Do đó : y = 60.5 = 300 tấn

Vậy đơn vị B đã vận chuyển 300 tấn hàng

Đáp án cần chọn là B


Câu 10:

Bốn lớp 7A1 , 7A2, 7A3, 7A4 trồng được 172 cây xung quanh trường. Tính số cây của lớp 7A4 đã trồng được biết rằng số cây của lớp 7A1 và 7A2 tỉ lệ với 3 và 4,  số cây của lớp 7A2 và 7A3 tỉ lệ với 5 và 6, số cây của 7A3 và 7A4 tỉ lệ với 8 và 9

Xem đáp án

Gọi x,y,z,t lần lượt là số cây trồng được của lớp 7A1,7A2,7A3,7A4

(x,y,z,t *)

 Ta có: xy=34;yz=56;zt=89 và x+y+z+t=172

xy=34 suy ra x3=y4 hay x15=y20(1)

Vì yz=56 suy ra y5=z6 hay y20=z24(2)

zt=89 suy ra z8=t9 hay z24=t27(3)

Từ (1);(2);(3) ta có x15=y20=z24=t27

Với x+y+z+t=172, áp dụng tính chất dãy tỉ số bằng nhau ta có x15=y20=z24=t27=x+y+z+t15+20+24+27=17286=2

Suy ra t27= 2 nên t = 27.2 = 54 (tm)

Số cây của lớp 7A4 trồng được là 54 cây

Đáp án cần chọn là C


Câu 11:

Bốn lớp 7A1 , 7A2, 7A3, 7A4 trồng được 310 cây xung quanh trường. Tính số cây của lớp 7A3 đã trồng được biết rằng số cây của lớp 7A1 và 7A2 tỉ lệ với 2 và 3,  số cây của lớp 7A2 và 7A3 tỉ lệ với 4 và 5, số cây của 7A3 và 7A4 tỉ lệ với 9 và 10

Xem đáp án

Gọi x,y,z,t lần lượt là số cây trồng được của lớp 7A1,7A2,7A3,7A4

(x,y,z,t* )

 Ta có: xy=23;yz=45;zt=910 và x+y+z+t=310

xy=23 suy ra x2=y3 hay x24=y36

Vì  yz=45 suy ra y4=z5 hay y36=z45(2)

zt=910 suy ra z9=t10 hay z45=t50 (3)

Từ (1);(2);(3) ta có x24=y36=z45=t50

Với x+y+z+t=172, áp dụng tính chất dãy tỉ số bằng nhau ta có x24=y36=z45=t50=x+y+z+t24+36+45+50=310155=2

Suy ra z45 = 2 nên t = 45.2 = 90 (tm)

Số cây của lớp 7A4 trồng được là 90 cây

Đáp án cần chọn là B


Câu 12:

Biết độ dài ba cạnh của một tam giác tỉ lệ với 5,6,7 và chu vi tam giác bằng 36. Tính độ dài cạnh lớn nhất của tam giác đó

Xem đáp án

Gọi x,y,z là ba cạnh của tam giác (36 > x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 5;6;7 ta có: x5=y6=z7

Vì chu vi tam giác bằng 36 nên x+y+z = 36

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: x5=y6=z7=x+y+z5+6+7=3618=2

Do đó x = 2.7 = 14

Vậy cạnh nhỏ nhất của tam giác là 14m

Đáp án cần chọn là C


Bắt đầu thi ngay