- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
Trắc nghiệm Lượng giác từ đề thi đại hoc cơ bản, nâng cao (có đáp án) (phần 1)
-
23922 lượt thi
-
30 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 9:
Cho phương trình . Có bao nhiêu giá trị nguyên của m để phương trình có đúng một nghiệm thuộc
Câu 13:
Tìm điều kiện cần và đủ của a, b, c để phương trình asinx+bcosx=c có nghiệm
Điều kiện để phương trình asinx + bcosx = c có nghiệm là: .
Chọn D
Câu 20:
Phương trình nào dưới đây vô nghiệm:
+) Xét phương trình: 3sinx – 2 = 0
Vì nên phương trình này có nghiệm. Do đó loại A.
+) Xét phương trình: . Do đó loại B
+) Xét phương trình: tanx = 3 (điều kiện xác định: )
. Do đó loại C
+) Xét phương trình: sinx + 3 = 0
Mà nên phương trình đã cho vô nghiệm. Do đó D đúng.
Chọn D
Câu 27:
Nghiệm âm lớn nhất của phương trình là
Điều kiện xác định: \(cosx \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
Khi đó phương trình trở thành:
\( \Leftrightarrow \left[ \begin{array}{l}tanx = - 1\\\tan x = - \frac{3}{2}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = {\rm{arctan}}\left( { - \frac{3}{2}} \right) + k\pi \end{array} \right.,k \in \mathbb{Z}\)
+) Với họ nghiệm \(x = - \frac{\pi }{4} + k\pi \), nghiệm âm lớn nhất là \(x = - \frac{\pi }{4}\) khi k = 0.
+) Với họ nghiệm \(x = {\rm{arctan}}\left( { - \frac{3}{2}} \right) + k\pi \), nghiệm âm lớn nhất là: \(x = {\rm{arctan}}\left( { - \frac{3}{2}} \right)\) khi k = 0.
Vậy nghiệm âm lớn nhất của phương trình: \(x = - \frac{\pi }{4}\).
Chọn C.
Câu 29:
Số điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác là
Xét phương trình: 1 + cosx + cos2x + cos3x = 0
\( \Leftrightarrow \)1 + cosx + 2cos2x – 1 + cos3x = 0
\( \Leftrightarrow \)2cos2x + cosx + cos3x = 0
\( \Leftrightarrow \)2cos2x + 2cos2xcosx = 0
\( \Leftrightarrow \)2cosx(cosx + cos2x) = 0
\( \Leftrightarrow 4cosx.cos\frac{{3x}}{2}{\rm{. }}cos\frac{x}{2} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\cos\frac{{3x}}{2} = 0\\cos\frac{x}{2} = {\rm{ }}0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = {\rm{ }}\pi + {\rm{k2}}\pi \end{array} \right.,k \in \mathbb{Z}\)
Điểm A và B biểu diễn nghiệm \(x = \frac{\pi }{2} + k\pi \) trên đường tròn lượng giác.
Điểm C biểu diễn nghiệm \(x = \pi + k2\pi \) trên đường tròn lượng giác.
Điểm D, C và E biểu diễn nghiệm \(x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\) trên đường tròn lượng giác.
Có tất cả 5 điểm biểu diễn các nghiệm của phương trình đã cho.