- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
Trắc nghiệm Lượng giác từ đề thi Đại học cơ bản, nâng cao (có lời giải chi tiết) (phần 1)
-
23424 lượt thi
-
30 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 26:
Tính tổng các nghiệm trong đoạn của phương trình (1)
Điều kiện để phương trình (1) có nghĩa:
\(\left\{ \begin{array}{l}{\rm{cosx}} \ne {\rm{0}}\\{\rm{cos3x}} \ne {\rm{0}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{6} + \frac{{k\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\)
Khi đó phương trình (1) trở thành:
\(3x = x + k\pi ,k \in \mathbb{Z}\)
\( \Leftrightarrow x = \frac{{k\pi }}{2},k \in \mathbb{Z}\)
So sánh với điều kiện:
\( \Rightarrow x = k\pi ,k \in \mathbb{Z}\)
Mà \(x \in \left[ {0;30} \right]\) nên \(0 \le k\pi \le 30 \Rightarrow k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)
Các nghiệm của phương trình trong khoảng trên là: \(x \in \left\{ {0;\pi ;2\pi ;3\pi ;...;9\pi } \right\}\)
Vậy tổng các nghiệm của phương trình là: \(0 + \pi + 2\pi + 3\pi + ... + 9\pi = 45\pi .\)
Chọn C