IMG-LOGO

Đề thi thử THPTGQ môn Toán cực cực hay có lời giải chi tiết - đề 18

  • 11451 lượt thi

  • 50 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 2:

Cho hình lăng trụ đứng tam giác ABC.A', tam giác ABC có , góc BAC^=60°, A'C=a3. Tính thể tích khối lăng trụ ABC.A'B'C' 

Xem đáp án

Đáp án C


Câu 3:

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S: x-12+y2+z-22=9 và mặt phẳng P:2x+y-z+3=0. Khẳng định nào sau đây là đúng?

Xem đáp án

Đáp án B


Câu 4:

Họ nguyên hàm Fx của hàm số fx=-2x+12x với x0

Xem đáp án

Đáp án A


Câu 5:

Cho log321=a, tính A=log7147

Xem đáp án

Đáp án B


Câu 6:

Trong không gian cho đường thẳng d có phương trình x-y=02x+y-z+3=0. Một véctơ chỉ phương của d

Xem đáp án

Đáp án A

Đường thẳng d, là giao tuyến của hai mặt phẳng x-y=02x+y-z+3=0

 VTCP của đường thẳng d.


Câu 7:

Tìm một nguyên hàm Fx của hàm số fx=x2+2cos2x-3 thỏa mãn đồ thị của Fx, f(x) cắt nhau tại một điểm thuộc trục tung.

Xem đáp án

Đáp án D


Câu 11:

Giá trị của A=a2018loga220170<a1 bằng

Xem đáp án

Đáp án C


Câu 14:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng SBCABC bằng 60°. Tính thể tích V của khối chóp S.ABC.

Xem đáp án

Đáp án A


Câu 15:

Cho hàm số y=2x-1x+2 có đồ thị C. Khẳng định nào sau đây là đúng?

Xem đáp án

Đáp án D

Sửa lại các phương án sai:

- Đồ thị C hàm số nghịch biến trên mỗi khoảng  -;2 và 2;+

- Đồ thị C cắt trục tung tại điểm (0;-2) và cắt trục hoành tại điểm 12;0

- Đồ thị C đối xứng qua điểm (-2;2)


Câu 16:

Trong không gian tọa độ Oxyz, cho mặt phẳng P: 2x-2y+z-4=0 và mặt phẳng Q: x+y-3z-5=0. Gọi φ là góc giữa hai mặt phẳng PQ. Khẳng định nào sau đây là đúng?

Xem đáp án

Đáp án A

Gọi φ là góc giữa hai mặt phẳng P và Q.


Câu 18:

Cho số phức z=1+2i, tính môđun của số phức w=2-z¯z-1 .

Xem đáp án

Đáp án D


Câu 19:

Tiếp tuyến của đồ thị hàm số y=x4-3x2+1 tại điểm cực tiểu của đồ thị có phương trình

Xem đáp án

Đáp án B

Vậy tiếp tuyến của đồ thị hàm số tại điểm cực tiểu có phương trình y=-54


Câu 20:

Cho hàm số y=fx=ax3+bx2+cx+da0 là hàm số lẻ trên . Khi đó khẳng định nào sau đây là đúng?

Xem đáp án

Đáp án D


Câu 21:

Trong các hàm số dưới đây, hàm số nào đồng biến trên R?

Xem đáp án

Đáp án B

Hàm số y=log32x+1 có tập xác định là R và có cơ số a = 3 > 1 do đó hàm số đồng biến trên R. 


Câu 22:

Cho hàm số fx=13x3+x2-3x+1 phương trình f'x0

Xem đáp án

Đáp án B


Câu 23:

Tính tích phân 0a1x2-1dx với a>1, a

Xem đáp án

Đáp án B


Câu 24:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. AD=2BC, AB=BC=a. SA vuông góc với đáy, SA=a2Tính góc giữa (AC,(SCD))

Xem đáp án

Đáp án A

Gọi M là trung điểm AD, khi đó CM = MA = MD nên tam giác ACD vuông tại C.


Câu 25:

Với giá trị nào của m thì phương trình x3-3x=m có ba nghiệm phân biệt?

Xem đáp án

Đáp án D

là hàm số chẵn do đó nó có tính đối xứng qua trục tung và đồ thị của nó được suy ra từ đồ thị hàm số 

Do đó phương trình x3-3x=m có ba nghiệm phân biệt m = 0


Câu 29:

Cho hình chóp S.ABC có đáy là tam giác vuông cận tại B, AB=d. Cạnh bên SA vuông góc với mặt phẳng (ABC) SC hợp với đáy một góc bằng 60°. Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu .

Xem đáp án

Đáp án C

Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi O là trung điểm của AC, suy ra OM//SA

=> OM là trục của đường tròn ngoại tiếp tam giác ABC, 

=> OA = OB = OC

Mặt khác, tam giác SAC vuông tại A, do đó OA = OS = OC

Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ABC có thể tích 

A là hình chiếu của S lên mặt phẳng (ABC), do đó góc 


Câu 30:

Cắt một hình nón bởi mặt phẳng qua trục được thiết diện một tam giác vuông cân có cạnh huyền bằng 2. Diện tích toàn phần của hình nón là?

Xem đáp án

Đáp án A

Thiết diện là tam giác vuông cân tại đình B, cạnh huyền AC = 2.


Câu 31:

Cho số phức z thỏa mãn z-1=z+3i. Tập hợp các điểm biểu diễn số phức z

Xem đáp án

Đáp án D


Câu 33:

Cho đường thẳng d:x=2-3ty=2tz=1+tđiểm A(1;2;1). Tìm trên đường thẳng d điểm M sao cho AM117

Xem đáp án

Đáp án A


Câu 34:

Hàm số nào sau đây có đạo hàm là y'=2xln2+3x2?

Xem đáp án

Đáp án A


Câu 35:

Diện tích hình phẳng giới hạn bởi đường cong y=axa>0, trục hoành và đường thẳng x=a bằng ka2(k). Tính giá trị của tham số k.

Xem đáp án

Đáp án C


Câu 37:

Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) và đường thẳng d:x=-1+ty=2+2tz=1-2t. Xác định tọa độ điểm M' là điểm đối xứng với M qua đường thẳng d.

Xem đáp án

Đáp án C

Gọi H là hình chiếu của M trên d 


Câu 39:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x-12=y-1=z+23 và điểm A(1;0;0).

Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là

Xem đáp án

Đáp án C


Câu 42:

Cho hình chữ nhật ABCD và nửa đường tròn đường kính AB như hình vẽ. Gọi M, N lần lượt là trung điểm của AB, CD. Biết AB=4, AD=7. Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục MN.

Xem đáp án

Đáp án D

 

Khi quay mô hình đã cho quanh trục MN ta được một khối tròn xoay gồm:

- hình trụ có chiều cao là AD, đáy là hình tròn , có thể tích V1 ;

- nửa hình cầu tâm M bán kính MA, có thể tích V2

 

 


Câu 43:

Cho khối đa diện đều n mặt có thể tích là V và diện tích mỗi mặt của nó là S. Khi đó tổng khoảng cách từ một điểm bất kì bên trong khối đa diện đó đến các mặt của nó bằng

Xem đáp án

Đáp án D

Gọi O là một điểm bất kì bên trong khối đa diện.

Chia khối đa diện đều n mặt đã cho thành n khối chóp có đỉnh là O và các mặt đáy là các mặt của khối đa diện. Chiều cao hạ từ O đến n mặt tương ứng là


Câu 44:

Cho hàm số y=fx=3x+4x, khẳng định nào sau đây là sai?

Xem đáp án

Đáp án D

VT = a là một hàm hằng, do đó nếu phương trình (1) có nghiệm thì nghiệm đó là duy nhất.

Vậy phương án sai là “Phương trình fx=12 có hai nghiệm phân biệt


Câu 45:

Cho hình phẳng H giới hạn bởi các đường y=xlnx, trục hoành, đường thẳng x=12. Tính diện tích hình phẳng H.

Xem đáp án

Đáp án B

Điều kiện: x > 0

Phương trình hoành độ giao điểm của đồ thị hàm số  và trục hoành là 


Câu 47:

Tìm m để đồ thị hàm số y=x4-2mx2+1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4.

Xem đáp án

Đáp án A

Tam giác ABC cân tại A, do đó diện tích tam giác ABC


Câu 48:

Cho điểm M-2;1;1. Viết phương trình mặt phẳng α đi qua gốc tọa độ O0;0;0 và cách M một khoảng lớn nhất.

Xem đáp án

Đáp án C

Khoảng cách từ M đến mặt phẳng α bằng: 

 


Câu 49:

Cho hình chóp S.ABC có các cạnh SA=SB=SC=BA=BC=a. Tìm thể tích lớn nhất của hình chóp S.ABC.

Xem đáp án

Đáp án C

Gọi M là trung điểm của AC


Câu 50:

Trong không gian tọa độ Oxyz, cho điểm . Gọi là đường thẳng đi qua A và vuông góc với mặt phẳng ABC. Tìm điểm S sao cho mặt cầu ngoại tiếp hình chóp S.ABC có bán kính R=32 .

Xem đáp án

Đáp án B

Thể tích hình cầu ngoại tiếp hình chóp S.ABC bằng

Thay vào (1) ta được


Bắt đầu thi ngay