Tổng hợp 20 đề thi thử THPTQG môn Toán cực hay có đáp án - đề 16
-
4074 lượt thi
-
50 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
Tập xác định của hàm số là
Đáp án B
Tập xác định của hàm số là tập các giá trị của x thỏa mãn:
hay
Câu 2:
Hàm số nào sau đây đồng biến trên khoảng ?
Đáp án D
Hàm số đồng biến trên khi a>1 và nghịch biến khi
Kiểm tra các giá trị của cơ số chỉ có nên hàm số đồng biến trên .
Câu 3:
Đạo hàm của hàm số trên khoảng là
Đáp án D
Áp dụng quy tắc đạo hàm của một tích ta có:
Câu 4:
Tìm giá trị lớn nhất M của hàm trên đoạn
Đáp án D
Ta có:
Ta tính các giá trị tại các điểm cực trị của f(x) trong và các điểm biên của được kết quả như sau: khi đó giá trị lớn nhất trong các giá trị trên là GTLN của hàm số trên . Như vậy hàm số đã cho đạt GTLN bằng 9 khi x=2 trên .
Câu 6:
Hình đa diện nào dưới đây không có tâm đối xứng?
Đáp án B
Trong các hình đã cho thì hình tứ diện đều không có tâm đối xứng.
Câu 7:
Hàm số nào sau đây không đồng biến trên khoảng ?
Đáp án C
Để hàm số đồng biến trên thì điều kiện trước tiên là tập xác định của hàm số là
Như vậy ta chọn đáp án C vì tập xác định của hàm số là
Câu 8:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Đáp án A
Nhìn trên đồ thị ta thấy hàm số có hai cực trị nên có dạng đồ thị của hàm số bậc 3 ta loại đáp án B và chọn đáp án D.
Khi ta thấy nên hệ số a của lớn hơn 0nên ta loại đáp án C chọn đáp án A.
Câu 9:
Cho hàm số có bảng biến thiên như sau:
Mệnh đề nào dưới đây là sai?
Đáp án A
Dựa trên bảng biến thiên ta thấy hàm số có hai cực trị. Đồ thị hàm số có một điểm cực đại có tọa độ , một điểm cực tiểu có tọa độ vậy ta chọn đáp án A vì hàm số đã cho đạt cực tiểu tại
Câu 10:
Đường tiệm ngang của đồ thị hàm số là
Đáp án B
Hàm số bậc nhất trên bậc nhất luôn có duy nhất một tiệm cận ngang
Như vậy hàm số đã cho có tiệm cận ngang là
Câu 11:
Tìm số giao điểm của đồ thị hàm số và đường thẳng
Đáp án A
Số giao điểm của đồ thị hàm số và đường thẳng là số nghiệm của PT
=> Có hai giao điểm.
Câu 12:
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Đáp án B
Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.
Câu 13:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, và SA vuông góc với mặt đáy (ABCD). Thể tích V của khối chóp S.ABCD bằng
Đáp án B
Do
Câu 15:
Tìm mệnh đề đúng trong các mệnh đề sau
Đáp án D
Đáp án A sai vì hàm số đồng biến trên .
Đáp án B sai vì hàm số nghịch biến trên .
Đáp án C sai vì đồ thị hàm số luôn đi qua điểm .
Câu 16:
Số đường tiệm cận của đồ thị hàm số là
Đáp án D
Tập xác định của hàm số là:
nên hàm số không có tiệm cận đứng.
Ta có: ;
nên đồ thị hàm số đã cho có một tiệm cận ngang là . Vậy hàm số đã cho có một tiệm cận.
Câu 17:
Số nghiệm nằm trong đoạn của phương trình là
Đáp án B
PT:
Trong đoạn thì số nghiệm của (1) là 5 ứng với , (2) là 1 ứng với , (3) là 1 ứng với k=0.
Như vậy PT đã cho có 7 nghiệm trong đoạn .
Câu 18:
Giá trị của tham số m để phương trình có hai nghiệm thoả mãn là
Đáp án C
Đặt PT đã cho với ẩn số t là:
Điều kiện:
Câu 19:
Cho hình lăng trụ tam giác đều có tất cả các cạnh đều bằng a. Khi đó thể tích V của khối lăng trụ trên là
Đáp án A
Diện tích của tam giác đều cạnh a là . Lăng trụ tm giác đều các cạnh bên vuông góc với đáy nên thể tích của lăng trụ đã cho
Câu 21:
Cho hàm số liên tục trên khoảng và . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau
1) Hàm số đạt cực trị tại điểm khi và chỉ khi .
2) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thoả mãn điều kiện thì điểm không phải là điểm cực trị của hàm số .
3) Nếu đổi dấu khi x qua điểm thì điểm là điểm cực tiểu của hàm số .
4) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thoả mãn điều kiện thì điểm là điểm cực đại của hàm số .
Đáp án A
Mệnh đề 1) sai vì chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại
Mệnh đề 2) Sai vì khi có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại .
Mệnh đề 3) sai vì đổi dấu qua điểm thì điểm có thể là điểm cực đại hoặc điểm cực tiểu của hàm số.
Mệnh đề 4) Sai vì trong trường hợp này là điểm cực tiểu của đồ thị hàm số.
Câu 22:
Hàm số là hoàn tuần hoàn với chu kì là
Đáp án D
Hàm số tuần hoàn với chu kỳ vì
+)
+) Nếu tồn tại T>0 sao cho với
là giá trị nhỏ nhất của .
Câu 23:
Giá trị nhỏ nhất, lớn nhất của hàm số trên đoạn theo thứ tự là
Đáp án A
Ta có:
Ta tính các giá trị của hàm số tại điểm cực trị và các điểm biên
So sánh các giá trị ta kết luận hàm số đạt GTNN và GTLN trên
Lần lượt là 1 và .
Câu 24:
Một hình trụ có bán kính đáy bằng r và có thiết diện qua trục là một hình vuông. Khi đó diện tích toàn phần của hình trụ đó là
Đáp án A
Chu vi hình tròn đáy:
Thiết diện qua đáy là hình vuông nên chiều cao của hình trụ là
Vậy diện tích toàn phần của hình trụ là:
Câu 25:
Phép biến hình nào sau đây không là phép dời hình?
Đáp án D
Phép vị tự không phải phép dời hình, do nó không bảo tồn khoảng cách giữa hai điểm bất kì trên hình khi tỉ số khác .
Câu 26:
Bà Hoa gửi 100 triệu đồng vào tài khoản định kỳ tính lãi kép với lãi suất 8%/năm. Sau 5 năm bà rút toàn bộ tiền và dùng một nửa để sửa nhà, số tiền còn lại bà tiếp tục gửi vào ngân hàng. Tính số tiền lãi thu được sau 10 năm.
Đáp án A
Sau 5 năm đầu bà Hoa thu được số tiền lãi từ ngân hàng là:
(triệu)
Sau 5 năm tiếp theo bà Hoa thu được số tiền lãi tiếp theo theo là:
(triệu)
Vậy số tiền lãi thu được sau 10 năm là;
(triệu)
Câu 27:
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua hai điểm A và B là
Đáp án D
Tập hợp tâm I của những mặt cầu đi qua hai điểm A, B cho trước là tập hợp điểm thỏa mãn IA=IB do đó tập hợp này là mặt phẳng trung trực của đoạn thẳng AB.
Câu 28:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
Đáp án D
Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.
+) Chữ số hàng đơn vị là 2
Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có cách sắp xếp.
Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là: (số)
+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6
Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có cách sắp xếp.
Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là (số)
=> Tổng số các chữ số thỏa mãn bài toán:
(số).
Câu 29:
Cho hàm số có đồ thị như hình vẽ bên.
Tìm khẳng định đúng trong các khẳng định sau
Đáp án D
Đồ thị hàm số có tiệm cận ngang .
Ta có: c<0 do đồ thị hàm số có tiệp cận đứng x=c .
Đồ thị hàm số cắt trục tung tại điểm có tung độ .
Câu 31:
Cho hình chóp S.ABC có đáy là tam giác cân tại A, , . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích V của khối chóp S.ABC là
Đáp án A
Gọi M là trung điểm AB khi đó
Ta có: (độ dài đường cao trong tam giác đều);
Vậy thể tích của khối chop là:
Câu 32:
Một xưởng in có 8 máy in, mỗi máy in được 3600 bản in trong một giờ. Chi phí để vận hành một máy trong mỗi lần in là 50 nghìn đồng. Chi phí cho n máy chạy trong một giờ là nghìn đồng. Hỏi nếu in 50000 tờ quảng cáo thì phải sử dụng bao nhiêu máy để được lãi nhiều nhất?
Đáp án C
Gọi là hàm chi phí in 50000 tờ quảng cáo . Ta cần tìm n để f(n) có giá trị thấp nhất. Theo giả thiết f(n) bao gồm chi phí vận hành cho n máy là 50n nghìn đồng. Và chi phí chạy máy sản xuất 50000 tờ quảng cáo là:
Vậy
Đến đây ta có thể khảo sát hàm f(n) với nnguyên để tìm chi phí thấp nhất hoặc kiểm tra trực tiếp bốn đáp án và được kết quả thấp nhất với n=5.
Câu 33:
Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6. Người đó bắn hai viên đạn một cách độc lập. Xác suất để một viên trúng mục tiêu và một viên trượt mục tiêu là
Đáp án C
Gọi là biến cố viên thứ nhất trúng mục tiêu
Gọi là biến cố viên thứ hai trúng mục tiêu
Do là hai biến cố độc lập nên xác suất để có một viên trúng mục tiêu và một viên trượt mục tiêu là:
Câu 34:
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a , SA=a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCMN bằng
Đáp án D
Do cân nên M, N là trung điểm SB, SC
Ta có:
Câu 35:
Tập các giá trị của tham số m để phương trình có nghiệm trên đoạn là
Đáp án B
Đặt thay vào PT phương trình đã cho trở thành . Để phương trình (1) có nghiệm trên đoạn thì PT (2) có nghiệm trên .
Xét hàm số ta có BBT của f(t) như sau:
Qua BBT ta thấy để PT (2) có nghiệm trên
Câu 36:
Cho hàm số (C) và điểm thuộc đồ thị (C). Đặt , khi đó để tổng khoảng cách từ điểm M đến hai trục toạ độ là nhỏ nhất thì mệnh đề nào sau đây là đúng?
Đáp án A
Điểm thuộc đồ thị (C)
=>
Như vậy tổng khoảng cách từ M tới hai trục tọa độ nhỏ nhất bằng
Câu 37:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy (ABCD) và SA=a. Gọi E là trung điểm của cạnh CD. Mặt cầu đi qua bốn điểm S, A, B, E có bán kính là
Đáp án A
Hình chóp SABE có cạnh bên đáy (ABE) ta có công thức tính bán kính mặt cầu của hình chóp dạng này là ( với là bán kính đường tròn ngoại tiếp đáy và h là chiều cao hình chóp )
Ta có: ;
vậy .
Câu 38:
Cho hai đường cong và . Để và tiếp xúc nhau thì giá trị của tham số m bằng
Đáp án C
Đặt thì PT của và PT của
Để và tiếp xúc nhau thì PT:
có nghiệm kép t>0
ta không lấy nghiệm vì khi đó nghiệm kép .
Câu 39:
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số là
Đáp án C
Đặt ta có:
Tập các giá trị của y là tập các giá tri làm cho PT có nghiệm với ẩn t
Câu 40:
Một ôtô đang chạy với vận tốc 20m/s thì người lái xe đạp phanh. Sau khi đạp phanh, ôtô chuyển động chậm dần đều với vận tốc (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ôtô còn di chuyển được bao nhiêu mét?
Đáp án C
Ta có: .
Ta thấy sau 5 giây thì xe dừng lại nên quãng đường ô tô chuyển động từ khi đạp phanh đến khi dừng lại hẳn là: .
Câu 41:
Cho hàm số (C), gọi I là tâm đối xứng của đồ thị (C) và M(a;b) là một điểm thuộc đồ thị. Tiếp tuyến của đồ thị (C) tại điểm M cắt hai tiệm cận của đồ thị (C) lần lượt tại hai điểm A và B. Để tam giác IAB có bán kính đường tròn nội tiếp lớn nhất thì tổng a+b gần nhất với số nào sau đây?
Đáp án B
Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2)
Ta có: PTTT tại điểm là . Từ đây ta xác định được giao điểm của PTTT tại và hai tiệm cận , là .
Độ dài các cạnh của như sau
Áp dụng bất đẳng thức Cosi ta có đạt được
Câu 42:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a . Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN và DM. Biết SH=3a và vuông góc với mặt đáy (ABCD). Khoảng cách giữa hai đường thẳng MD và SC là
Đáp án C
Rễ thấy
mà
mà do .
Như vậy kẻ thì HK là đường vuông góc chung của DM và SC hay HK là khoảng cách cần xác định.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
Câu 43:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng . Gọi M, N lần lượt là trung điểm của các cạnh cạnh SD, DC. Thể tích khối tứ diện ACMN là
Đáp án C
Góc giữa mặt bên và mặt đáy bằng
Kẻ MH song song với và
Ta có:
Câu 44:
Xét các mệnh đề sau:
1)
.
2) .
3) .
4) .
Số mệnh đề đúng là:
Đáp án B
Mệnh đề 1) sai vì:
Mệnh đề 2) sai vì khi x=0 biểu thức vế trái không xác định.
Mệnh đề 3) đúng vì với ta luôn có:
Mệnh đề 4) sai vì:
Câu 45:
Số giá trị nguyên của tham số m để phương trình có ba nghiệm phân biệt là
Đáp án C
Điều kiện
Ta có PT:
Xét hàm số:
Đặt
Ta có BBT của f(x) như sau:
Dựa vào BBT ta thấy để PT đã cho có 3 nghiệm phân biệt thì với m nguyên
Câu 46:
Cho khai triển , với và là các hệ số. Biết rằng khi đó tổng bằng
Đáp án A
Ta có:
Ta tính các số hạng như sau:
;
Như vậy ta có:
Theo giả thiết
Trong khai triển:
cho x = 1 ta được:
Câu 47:
Cho tứ diện ABCD có , và . Khoảng cách từ B đến mặt phẳng (ACD) bằng . Biết thể tích của khối tứ diện bằng . Góc giữa hai mặt phẳng (ACD) và (BCD) là
Đáp án C
Gọi h là khoảng cách từ
Gọi M là trung điểm AD.
vuông tại
Hay góc giữa hai mặt phẳng bằng
Câu 48:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là
Đáp án A
Do AB song song với .
Do G là trọng tâm là trung điểm là trung điểm .
Gọi K là trung điểm là góc giữa mặt bên và đáy.
Ta có:
Câu 49:
Cho hàm số có đạo hàm . Khi đó số cực trị của hàm số là
Đáp án D
Hàm số có đạo hàm
Dễ thấy PT có 6 nghiệm làm cho đổi dấu nên hàm số có 6 cực trị.
Câu 50:
Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu không thấm nước, có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là V. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu chìm trong nước (hình bên).
Tính thể tích nước còn lại trong bình.
Đáp án B
Thể tích nước tràn ra là thể tích quả cầu
Gọi R là bán kính đáy hình nón. Áp dụng hệ thức lượng trong tam giác vuông SOA ta có:
từ đây ta tính được thể tích hình nón là:
Vậy thể tích nước còn lại là:
.