80 câu trắc nghiệm Khối đa diện nâng cao phần 4 (có đáp án)
-
1654 lượt thi
-
18 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a.
Chọn D
Ta có
Gọi H là trung điểm AB thì , kẻ
ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:
Câu 2:
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABCD). Biết côsin của góc tạo bởi mặt phẳng (SCD) và (ABCD) bằng . Thể tích Vcủa khối chóp S.ABCD là:
Chọn A
Câu 3:
Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SC = a, cạnh SD thay đổi. Thể tích lớn nhất của khối chóp S.ABCD là:
Chọn D
Gọi I là tâm hình thoi ABCD, H là hình chiếu của S lên mặt phẳng (ABCD).
Ta có SA = SB = SC nên hình chiếu vuông góc của S xuống mặt phẳng (ABCD) trùng với tâm đường tròn ngoại tiếp ΔABC hay H ∈ BI
Khi đó tam giác SBD vuông tại S.
Giả sử SD = x.
Câu 4:
Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng:
Chọn C
Câu 5:
Hình lăng trụ đứng ABC.A'B'C' có diện tích đáy bằng 4, diện tích ba mặt bên lần lượt là 9, 18 và 10. Thể tích khối lăng trụ ABC.A'B'C' bằng:
Chọn D
Câu 6:
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng 48cm3. Gọi M, N, P theo thứ tự là trung điểm các cạnh CC', BC và B'C', khi đó thể tích V của khối chóp A'.MNP là:
Chọn B
Câu 7:
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là điểm H thỏa mãn . Góc giữa hai mặt phẳng (SAB) và (SBC) là 60 độ. Thể tích của khối chóp S.ABC là:
Chọn A
Cách 1:
Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB
Từ giả thiết tam giác ABC vuông cân tại B ta được
Trong tam giác ICK vuông tại I có
Suy ra IK > IB.
Do nên tam giác BIK vuông tại K
Như vậy IK > IB (vô lý do IB là cạnh huyền).
TH2: tương tự phần trên ta có
Do
nên tam giác BIK vuông tại K và
Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra:
Vậy thể tích của khối chóp S.ABC là
Câu 8:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
Câu 9:
Cho khối tứ diện đều ABCD có thể tích là V. Gọi M, N, P, Q lần lượt là trung điểm của AC, AD, BD, BC. Thể tích khối chóp AMNPQ là:
Chọn C
Câu 10:
Cho hình lăng trụ tam giác đều ABC. A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 600, cạnh AB=a. Tính thể tích V của khối lăng trụ ABC. A'B'C'.
Chọn C
Gọi M là trung điểm của BC
AM BC (1)
Ta có
Mặt khác
Câu 11:
Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho . Mặt phăng (P) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích
Chọn A
Chia khối đa diện SCMNKL bởi mặt phẳng (NLC) được hai khối chóp N. SMLC và N. LKC. Vì SC song song với (MNKL) nên SC // ML //NK
Câu 12:
Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng Thể tích khối lăng trụ bằng
Chọn D
Gọi M là trung điểm của BC và H là hình chiếu của A trên A'M.
Ta có :
(do tính chất trọng tâm).
Xét tam giác vuông A'AM :
Suy ra thể tích lăng trụ ABC. A'B'C' là:
Câu 13:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích của khối chóp S. ABCD bằng Tính khoảng cách từ A đến mặt phẳng (SBE).
Chọn A
Câu 14:
Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD cân tại C và, và SA=a. Mặt phẳng (P) đi qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Tính thể tích khối chóp S. AMNP.
Chọn A
Gọi O là trọng tâm tam giác đều ABD và I là trung điểm BD thì:
Tam giác ICD vuông I có
O và C đối xứng nhau qua đường thẳng BD
Tam giác SAC vuông tại A có SN. SC=SA²
Tam giác ABC có
và AC²=AB²+BC²
tam giác ABC vuông tại B
Lại có tam giác SAB vuông nên M là trung điểm SB
Mặt khác
Câu 15:
Cho khối chóp tứ giác S. ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB,
SAC, SAD chia khối chóp này thành hai phần có thể tích là V₁ và V₂
(V₁ < V₂). Tính tỉ lệ .
Chọn C
Gọi G₁, G₂, G₃ lần lượt là trọng tâm các tam giác SAB, SAD, SAC.
Gọi I, J lần lượt là trung điểm của AB, AC thì
Qua G₁ dựng đường song song với AB, cắt SA, SB lần lượt tại M, N.
Qua N dựng đường song song với BC, cắt SC tại P.
Qua P dựng đường song song với CD, cắt SD tại Q.
Thiết diện của hình chóp S. ABCD khi cắt bới (G₁G₂G₃) là tứ giác MNPQ.
Câu 16:
Cho hình lăng trụ ABC. A'B'C' có đáy ABC là tam giác vuông tại A. cạnh BC=2a và nhọn. Biết (BCC'B') vuông góc với (ABC) và (ABB'A') tạo với (ABC) góc 450. Thể tích của khối lăng trụ ABC. A'B'C' bằng:
Chọn B
Do ABC là tam giác vuông tại A, cạnh BC=2a và nên AB=a, AC=
Gọi H là hình chiếu vuông góc của B' lên BC H thuộc đoạn BC (do nhọn)
(do (BCC'B') vuông góc với (ABC)).
Kẻ HK song song AC (K thuộc AB), (do ABC là tam giác vuông tại A).
Ta có ΔBB'H vuông tại H
Mặt khác HK song song AC
Từ (1), (2) và (3) suy ra:
Câu 17:
Cho khối lăng trụ ABC. A'B'C'. Gọi E là trọng tâm tam giác A'B'C' và F là trung điểm BC. Tính tỉ số thể tích giữa khối B'. EAF và khối lăng trụ ABC. A'B'C'.
Chọn D
Câu 18:
Cho hình chóp S. ABC có đường cao SA=2a, tam giác ABC vuông tại C, AB=2a,. Gọi H là hình chiếu của A trên SC, B' là điểm đối xứng của B qua mặt phẳng (SAC). Thể tích của khối chóp H. AB'B bằng:
Chọn D
Xét tam giác ABC ta có
Xét tam giác SAC ta có
Xét tam giác SAC ta có
Ta có: