IMG-LOGO
Trang chủ Lớp 12 Toán Trắc nghiệm tổng hợp môn Toán 2023 có đáp án

Trắc nghiệm tổng hợp môn Toán 2023 có đáp án

Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 75)

  • 825 lượt thi

  • 66 câu hỏi

  • 60 phút

Danh sách câu hỏi

Câu 1:

Cho hình chữ nhật ABCD có M là điểm thuộc cạnh AB sao cho \(AM = \frac{1}{4}AB = 3cm.\) Tìm điểm N trên cạnh DC sao cho diện tích hình MBCN gấp đôi diện tích hình MNDA.

Xem đáp án
Cho hình chữ nhật ABCD có M là điểm thuộc cạnh AB sao cho AM = 1/4 AB = 3 (ảnh 1)

• Vì ABCD là hình chữ nhật \(\left\{ {\begin{array}{*{20}{c}}{AB\parallel CD;BC\parallel AD}\\{AB = CD;BC = AD}\end{array}} \right..\)

• Vì AM // CN MNDA là hình thang.

• Vì BM // ND MBCN là hình thang.

Ta có \(AM = \frac{1}{4}AB = 3cm\) AB = 12cm.

Ta có \({S_{MBCN}} = \frac{1}{2}BC\left( {CN + MB} \right);{S_{MNDA}} = \frac{1}{2}AD\left( {AM + DN} \right).\)

Vì diện tích hình thang MBCN gấp đôi diện tích hình thang MNDA

\({S_{MBCN}} = 2{S_{MNDA}}\)

\(\frac{1}{2}BC\left( {CN + MB} \right) = 2.\frac{1}{2}AD\left( {AM + DN} \right)\)

BC(CN + MB) = 2AD(AM + DN)

CN + MB = 2(AM + DN) (vì BC = AD)

CD – DN + AB – AM = 2AM + 2DN

2AB = 3AM + 3DN

2.12 = 3.3 + 3DN

3DN = 15

DN = 5 cm.

Vậy để diện tích hình MBCN gấp đôi diện tích hình MNDA thì điểm N thuộc cạnh DC sao cho DN = 5 cm.


Câu 2:

Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho \(AM = \frac{{AC}}{4},\) N là trung điểm của đoạn thẳng DC. Tìm mệnh đề đúng?

Xem đáp án

Đáp án đúng là: D

Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho AM = AC/4 (ảnh 1)

Đặt \(\overrightarrow {AB} = \vec x;\,\,\overrightarrow {AD} = \vec y\)

Vì ABCD là hình vuông nên AB và AD vuông góc với nhau và AB = AD

\(\vec x.\vec y = 0;\,\,{\vec x^2} = {\vec y^2}\)

Khi đó:

\(\overrightarrow {MB} = \overrightarrow {AB} - \overrightarrow {AM} = \frac{1}{4}\left( {3\vec x - \vec y} \right);\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{4}\left( {\vec x + 3\vec y} \right)\)

Ta có: \(\overrightarrow {MB} .\overrightarrow {MN} = \frac{1}{{16}}\left( {3\vec x - \vec y} \right)\left( {\vec x + 3\vec y} \right)\)

\( = \frac{1}{{16}}\left( {3{{\vec x}^2} - 3{{\vec y}^2} + 8\vec x.\vec y} \right) = 0\)

Mặt khác:

\({\overrightarrow {MB} ^2} = \frac{1}{{16}}{\left( {3\vec x - \vec y} \right)^2} = \frac{5}{8}{\vec y^2};{\overrightarrow {MN} ^2} = \frac{1}{{16}}{\left( {\vec x + 3\vec y} \right)^2} = \frac{5}{8}{\vec y^2}.\)

Vậy tam giác BMN vuông cân tại M.


Câu 3:

Cho nửa đường tròn (O; R) đường kính AB. Bán kính OC vuông góc với AB. Gọi d là tiếp tuyến tại A của nửa đường tròn (O). Qua điểm M bất kì thuộc nửa đường tròn (O), kẻ tiếp tuyến với đường tròn cắt d tại E và cắt đường thẳng OC tại D. Gọi F là giao điểm của BD và d. Tiếp tuyến tại B cắt ED tại K. Chứng minh BK = EF.

Xem đáp án
Cho nửa đường tròn (O; R) đường kính AB. Bán kính OC vuông góc với AB. Gọi (ảnh 1)

Kẻ DD’ d (D’ d)

Ta có: OC // d (do cùng vuông góc với AB)

\(\widehat {DFD'} = \widehat {BDO}\)

Xét \(\Delta D'DF\)\(\Delta OBD\) có:

\(\widehat {FD'D} = \widehat {DOB}\left( { = 90^\circ } \right)\)

D’D = OB \(\left( { = \frac{1}{2}AB} \right)\)

\(\widehat {DFD'} = \widehat {BDO}\)

\(\Delta D'DF = \Delta OBD\left( {g.c.g} \right)\)

DB = DF (2 cạnh tương ứng)

Xét \(\Delta DKB\)\(\Delta DEF\) có:

\(\widehat {KDB} = \widehat {EDF}\)(đối đỉnh)

DB = DF (cmt)

\(\widehat {KBD} = \widehat {EFD}\) (góc so le trong do BK // d)

Do đó \(\Delta DKB = \Delta DEF\left( {g.c.g} \right)\)

BK = EF (2 cạnh tương ứng)(đpcm).


Câu 4:

Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x2 + 2 dư 2x − 1, chia cho x2 + x dư 16x − 11. Tính P(100).

Xem đáp án

Ta có: P(x) chia cho x2 + 2 dư 2x – 1

P(x) = Q(x).(x2 + 2) + 2x – 1 (với Q(x) là đa thức bậc nhất)

P(x) = (ax + b)(x2 + 2) + 2x – 1

Vì P(x) chia x2 + x dư 16x – 11

P(x) – 16x + 11 chia hết cho x2 + x.

Đặt R(x) = P(x) – 16x + 11

Khi đó R(x) = (ax + b)(x2 + 2) – 14x + 10 chia hết cho x2 + x

Vì thế hai nghiệm x = 0 và x = −1 của x2 + x cũng là nghiệm của R(x), tức là:

\(\left\{ {\begin{array}{*{20}{c}}{\left( {a.0 + b} \right)\left( {0 + 2} \right) - 14.0 + 10 = 0}\\{\left( { - a + b} \right)\left( {1 + 2} \right) - 14.\left( { - 1} \right) + 10 = 0}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b = - 5}\end{array}} \right.\)

P(x) = (3x – 5)(x2 + 2) + 2x – 1

Vậy P(100) = 2905789.


Câu 5:

Cho đa thức bậc 2 có dạng P(x) = ax2 + bx + c biết rằng P(x) thỏa mãn 2 điều kiện sau: P(0) = −2 và 4P(x) – P(2x – 1) = 6x – 6. Chứng minh rằng a + b + c = 0 và xác định đa thức P(x).

Xem đáp án

Ta có P(0) = −2 a.0 + b.0 + c = −2 c = −2

Ta có 4P(x) – P(2x – 1) = 6x – 6

4(ax2 + bx + c) – [a(2x – 1)2 + b(2x – 1) + c] = 6x – 6

4ax2 + 4bx + 4c – a(4x2 – 4x + 1) – 2bx + b – c = 6x – 6

4ax2 + 4bx + 4c – 4ax2 + 4ax – a – 2bx + b – c = 6x – 6

4ax + 2bx + (−a + b + 3c) = 6x – 6

(4a + 2b)x + (−a + b + 3c) = 6x – 6

\(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b + 3c = - 6}\end{array}} \right.\) \(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b = - 6 - 3.\left( { - 2} \right)}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b = 0}\end{array}} \right.\) \(\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\end{array}} \right.\)

Ta có: a + b + c = 1 + 1 + (−2) = 0 (đpcm)

Vậy P(x) = x2 + x – 2.


Câu 6:

Cho tam giác ABC nội tiếp đường tròn tâm O, hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.

a) Tứ giác BFCH là hình gì?

b) Gọi M là trung điểm của BC. Chứng minh 3 điểm H; M; F thẳng hàng.

c) Chứng minh \(OM = \frac{1}{2}AH.\)

Xem đáp án
Cho tam giác ABC nội tiếp đường tròn tâm O, hai đường cao BD và CE cắt nhau (ảnh 1)

a) \(\widehat {ACF} = 90^\circ \)(chắn nửa đường tròn)

FC vuông góc với AC

Lại có BH vuông góc với AC

FC // BH (1)

Chứng minh tương tự: BF // CH (2)

Từ (1) và (2) BFCH là hình bình hành.

b) Vì BFCH là hình bình hành nên 2 đường chéo HF và BC giao nhau tại trung điểm mỗi đường.

Mà M là trung điểm của BC M đồng thời là trung điểm của HF

H, M, F thẳng hàng (đpcm)

c) Xét tam giác AHF có O là trung điểm của AF

Có M là trung điểm của HF OM là đường trung điểm của tam giác AHF

\(OM = \frac{1}{2}AH\) (đpcm)


Câu 7:

Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Một đường thẳng đi qua A cắt các cạnh DE và BC theo thứ tự ở M và N. Chứng minh:

a) BC // DE.

b) AM = AN.

Xem đáp án
Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia  (ảnh 1)

a) Xét \(\Delta ADE\)\(\Delta ABC\) có:

AD = AB

\(\widehat {DAE} = \widehat {BAC}\) (2 góc đối đỉnh)

AC = AE

\(\Delta ADE = \Delta BAC\left( {c.g.c} \right)\)

\(\widehat {ADE} = \widehat {ABC}\) (2 góc tương ứng) mà chúng ở vị trí so le trong với nhau

BC // DE (đpcm)

b) Xét \(\Delta DAM\)\(\Delta BAN\) có:

\(\widehat {DAM} = \widehat {BAN}\) (2 góc đối đỉnh)

AD = AB

\(\widehat {ABN} = \widehat {ADM}\) (CMT)

\(\Delta DAM = \Delta BAN\left( {g.c.g} \right)\)

AM = AN (2 cạnh tương ứng) (dpcm)


Câu 8:

Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh:

a) \[\Delta ABC = \Delta ADE\].

b) DE = BC và DE // BC.

c) \[\Delta AEN = \Delta ACM\].

d) M, A, N thẳng hàng.

Xem đáp án
Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao (ảnh 1)

a) Xét ΔABC và ΔADE có:

AB = AD

\(\widehat {BAC} = \widehat {DAE}\) (hai góc đối đỉnh)

AC = AE

Do đó \[\Delta ABC = \Delta ADE\left( {c.g.c} \right)\] (đpcm)

b) Vì \[\Delta ABC = \Delta ADE\] (cmt)

BC = DE (hai cạnh tương ứng), \[\widehat {ACB} = \widehat {AED}\](hai góc tương ứng).

Mặt khác \(\widehat {ACB},\widehat {AED}\) là hai góc ở vị trí so le trong.

DE // BC

Vậy DE = BC và DE song song với BC.

c) Ta có: \(EN = \frac{{DE}}{2};MC = \frac{{BC}}{2};DE = BC\) nên EN = MC

Xét \[\Delta AEN\]\(\Delta ACM\) có:

AE = AC

\(\widehat {NEA} = \widehat {MCA}\) (do \(\widehat {AED} = \widehat {ACB}\))

EN = CM (cmt)

\[\Delta AEN = \Delta ACM\left( {c.g.c} \right)\] (đpcm)

d) Do \[\Delta AEN = \Delta ACM\] (cmt)

\(\widehat {NAE} = \widehat {MAC}\) (hai góc tương ứng)

Ta có: \(\widehat {NAM} = \widehat {NAE} + \widehat {EAM} = \widehat {MAC} + \widehat {EAM}\)

\(\widehat {MAC} + \widehat {EAM} = \widehat {EAC} = {180^o}\) (hai góc kề bù)

Do đó \(\widehat {NAM} = {180^o}\)

Vậy ba điểm M, A, N thẳng hàng.


Câu 9:

Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D BC). Trên AC lấy điểm E sao cho AE = AB.

a) Chứng minh \(\widehat {ABD} = \widehat {AED}\).

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

Xem đáp án
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (ảnh 1)

a) Xét \(\Delta ABD\)\(\Delta EAD\) có:

AB = AE

\(\widehat {BAD} = \widehat {EAD}\) (do AD là tia phân giác của góc BAC)

AD là cạnh chung

Do đó \(\Delta ABD = \Delta AED\left( {c.g.c} \right)\)

Suy ra \(\widehat {ABD} = \widehat {AED}\) (2 góc tương ứng)

b) Xét \(\Delta ABC\)\(\Delta AEF\) có:

\(\widehat {FAC}\) là góc chung

AB = AE

\(\widehat {ABC} = \widehat {AEF}\) (do \(\widehat {ABD} = \widehat {AED}\))

Do đó \(\Delta ABC = \Delta AEF\left( {g.c.g} \right)\)

Suy ra AC = AF (hai cạnh tương ứng)

c) Xét \(\Delta AHF\)\(\Delta AHC\) có:

AH là cạnh chung

\(\widehat {FAH} = \widehat {CAH}\) (do AD là tia phân giác của góc BAC)

AF = AC (cmt)

Do đó \(\Delta AHF = \Delta AHC\left( {c.g.c} \right)\)

Suy ra HF = HC (hai cạnh tương ứng)

Khi đó H là trung điểm của FC nên DH là đường trung tuyến xuất phát từ đỉnh D của \(\Delta DFC.\)

Xét \(\Delta DFC\) có CG và DH là hai đường trung tuyến, CG và DH cắt nhau tại I

Suy ra I là trọng tâm của tam giác DFC.

Do đó \(IH = \frac{1}{2}ID\) (tính chất trọng tâm của tam giác)

Hay DI = 2IH.

Vậy DI = 2IH.


Câu 10:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.


Câu 11:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:

a) \(\Delta AMB = \Delta EMC\).

b) AC CE.

c) BC = 2AM.

Xem đáp án
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối  (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta ECM\) có:

BM = CM (do M là trung điểm BC)

\(\widehat {AMB} = \widehat {EMC}\) (đối đỉnh)

AM = ME

Do đó \(\Delta ABM = \Delta ECM\left( {c.g.c} \right)\)

b) Ta có: \(\Delta ABM = \Delta ECM\)

\(\widehat {BAM} = \widehat {CEM}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong của AB và CE

AB // CE

mà AB AC (do \(\Delta ABC\) vuông tại A)

CE AC

c) Xét \(\Delta ABC\) vuông tại A có AM là trung tuyến

\(AM = BM = CM = \frac{{BC}}{2}\).

BC = 2AM.


Câu 12:

Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho \(3\overrightarrow {BM} = 2\overrightarrow {BC} ,5\overrightarrow {AN} = 4\overrightarrow {AC} .\)

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {BC} .\overrightarrow {AC} .\)

b) Chứng minh AM vuông góc với BN.

Xem đáp án
Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho 3 vecto BM = 2 (ảnh 1)

a) Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \widehat {BAC} = a.a.\cos 60^\circ = \frac{{{a^2}}}{2};\)

\(\overrightarrow {BC} .\overrightarrow {AC} = \overrightarrow {CB} .\overrightarrow {CA} = CB.CA.\cos \widehat {BCA} = a.a.\cos 60^\circ = \frac{{{a^2}}}{2}.\)

b) Ta có: \(3\overrightarrow {BM} = 2\overrightarrow {BC} \)

\(3\left( {\overrightarrow {AM} - \overrightarrow {AB} } \right) = 2\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)

\(\overrightarrow {AM} = \frac{2}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AB} \)

Ta có: \(5\overrightarrow {AN} = 4\overrightarrow {AC} \)

\(5\left( {\overrightarrow {BN} - \overrightarrow {BA} } \right) = 4\overrightarrow {AC} \)

\(\overrightarrow {BN} = - \overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \)

Ta có: \(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{2}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AB} } \right)\left( { - \overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} } \right)\)

\( = - \frac{2}{3}\overrightarrow {AC} .\overrightarrow {AB} + \frac{8}{{15}}{\overrightarrow {AC} ^2} - \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{4}{{15}}\overrightarrow {AC} .\overrightarrow {AB} \)

\( = - \frac{2}{5}\overrightarrow {AC} .\overrightarrow {AB} + \frac{8}{{15}}{\overrightarrow {AC} ^2} - \frac{1}{3}{\overrightarrow {AB} ^2}\)

\( = - \frac{2}{3}.\frac{{{a^2}}}{2} + \frac{8}{{15}}{a^2} - \frac{1}{3}{a^2} = 0\)

AM BN AM vuông góc với BN.


Câu 13:

Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB đến đường tròn (A, B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB, cắt đường tròn tại E, đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I.

a) Chứng minh tứ giác MAOB nội tiếp đường tròn.

b) Chứng minh \(I{B^2} = IF.IA.\)

c) Chứng minh IB = IM.

Xem đáp án
Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB đến đường tròn (ảnh 1)

a) Vì MA, MB là tiếp tuyến của (O) nên MA AO, MB BO.

\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

\(\widehat {MAO} + \widehat {MBO} = 180^\circ \)

MAOB là tứ giác nội tiếp đường tròn (dpcm)

b) Ta có: \(\widehat {FAB} = \widehat {FBI}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BF)

Xét \(\Delta IAB\)\(\Delta IBF\) có:

\(\widehat {IAB} = \widehat {IBF}\left( {cmt} \right)\)

\(\widehat {AIB}\) chung

Do đó \(\Delta IAB\) \(\Delta IBF\left( {g.g} \right)\)

Suy ra \(\frac{{IA}}{{IB}} = \frac{{IB}}{{IF}}\) hay IB2 = IA.IF.

c) Ta có: \(\widehat {MAI} = \widehat {AEF}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AF)

Vì AE // MB nên \(\widehat {AEF} = \widehat {FMI}\)

Suy ra \(\widehat {MAI} = \widehat {FMI}\)

Xét \(\Delta MAI\)\(\Delta FMI\) có:

\(\widehat {MAI} = \widehat {FMI}\,\,\left( {cmt} \right)\)

\(\widehat {MIA}\) chung

Do đó \(\Delta MAI\) \(\Delta FMI\,\,\left( {g.g} \right)\)

Suy ra \(\frac{{MI}}{{FI}} = \frac{{AI}}{{MI}}\) hay IM2 = IA.IF.

Kết hợp với ý b ta có IB2 = IM2 = IA.IF IB = IM (dpcm)


Câu 14:

Chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6 với n thuộc mọi số tự nhiên.

Xem đáp án

Ta có: n(n + 1)(2n + 1)

= n(n + 1)(2n + 2 – 1)

= n(n + 1)(n + 2 + n – 1)

= n(n + 1)(n + 2) + n(n + 1)(n – 1)

Vì n; n + 1; n + 2 là 3 số tự nhiên liên tiếp và n – 1; n; n + 1 cũng là 3 số tự nhiên liên tiếp.

Ta có: 3 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2. Do đó, tích 3 số tự nhiên liên tiếp chia hết cho 3.

Vì 3 số tự nhiên liên tiếp luôn có 2 chẵn 1 lẻ hoặc 2 lẻ 1 chẵn. Do đó, tích 3 số tự nhiên liên tiếp cũng chia hết cho 2.

Vì tích 3 số tự nhiên liên tiếp vừa chia hết cho 2 vừa chia hết cho 3 nên chia hết cho 6.

Vậy n(n + 1)(2n + 1) chia hết cho 6 với n thuộc mọi số tự nhiên.


Câu 15:

Cúc đang làm một phép tính mà khi nhân 342 với 1 số có 2 chữ số giống nhau, Cúc đã đặt các tích riêng thẳng cột như trong phép cộng nên Cúc đã tìm ra kết quả ít hơn tích đúng là 12312. Tìm số có 2 chữ số giống nhau đó.

Xem đáp án

Gọi số cần tìm là \(\overline {aa} \) (0 < a < 10; a ℕ*)

Ta có: \(\overline {aa} = 11a\)

Khi nhân 342 với \(\overline {aa} \) mà đặt các tích riêng thẳng hàng thì tức là ta nhân 342 với lần lượt a và a.

Ta sẽ có: (342\(\overline {aa} \)) – (342.a.2) = 12312

342.a.11 – 342.a.2 = 12312

342.a.(11 – 2) = 12312

342.a.9 = 12312

342.a = 1368

a = 4 (thỏa mãn)

Vậy số cần tìm là 44.


Câu 16:

Chứng minh rằng với mọi số nguyên n thì n7 – n chia hết cho 7.

Xem đáp án

Đặt An = n7 – n.

Khi n = 1 thì A1 = 0 và chia hết cho 7.

Giả sử đã có Ak = (k7 – k) 7 (giả thiết quy nạp)

Ta phải chứng minh Ak + 1 7, tức là (k + 1)7 – (k + 1) 7.

Áp dụng công thức Nhị thức Niu – tơn ta có:

Ak + 1 = (k + 1)7 – (k + 1)

= k7 + 7k6 + 21k5 + 35k4 + 35k3 + 21k2 + 7k + 1 – k – 1

= k7 – k + 7(k6 + 3k5 + 5k4 + 5k3 +3k2 + k).

Theo giả thiết quy nạp thì Ak = k7 – k chia hết cho 7, do đó Ak + 1 7.

Vậy n7 – n chia hết cho 7 với mọi số nguyên n.


Câu 17:

Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:

a) Bốn quả lấy ra cùng màu;

b) Có ít nhất một quả màu trắng.

Xem đáp án

Không gian mẫu là kết quả việc chọn ngẫu nhiên 4 quả cầu từ hộp 10 quả cầu.

\(n\left( \Omega \right) = C_{10}^4 = 210\)

a) A: “ Bốn quả lấy ra cùng màu”

TH1: Bốn quả lấy ra cùng đen

\(C_4^4 = 1\) cách.

TH2: Bốn quả lấy ra cùng trắng

\(C_6^4 = 15\) cách.

\(n\left( A \right) = 1 + 15 = 16.\)

\[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{16}}{{210}} = \frac{8}{{105}}.\]

b. B: “ Cả 4 quả lấy ra đều màu đen”

\(\overline B \): “ Có ít nhất 1 quả màu trắng”.

Ta có: \(n\left( B \right) = C_4^4 = 1.\)

\(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{1}{{210}}.\)

\(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{1}{{210}} = \frac{{209}}{{210}}.\)


Câu 18:

Cho phương trình sau: x2 + ax + b = 0. Xác định a và b để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x1 – x2 = 5 và \({x_1}^3 - {x_2}^3 = 35.\) Tìm 2 nghiệm phân biệt đó.

Xem đáp án

Để phương trình có 2 nghiệm phân biệt thì \(\Delta > 0\) a2 – 4b > 0

Theo hệ thức Viet, ta có:

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - a}\\{{x_1}.{x_2} = b}\end{array}} \right.\)

Ta có: \({x_1}^3 - {x_2}^3 = 35\)

\(\left( {{x_1} - {x_2}} \right)\left( {{x_1}^2 + {x_1}{x_2} + {x_2}^2} \right) = 35\)

\(5\left( {{x_1}^2 + {x_1}{x_2} + {x_2}^2} \right) = 35\)

\({x_1}^2 + {x_1}{x_2} + {x_2}^2 = 7\)

\({\left( {{x_1} - {x_2}} \right)^2} + 3{x_1}{x_2} = 7\)

\(25 + 3{x_1}{x_2} = 7\)

\({x_1}{x_2} = - 6\)

b = −6

Ta có hệ phương trình sau:

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} - {x_2} = 5}\\{{x_1}{x_2} = - 6}\end{array}} \right.\) \(\left\{ {\begin{array}{*{20}{c}}{{x_1} = 5 + {x_2}}\\{\left( {5 + {x_2}} \right){x_2} = - 6}\end{array}} \right.\) \(\left\{ {\begin{array}{*{20}{c}}{{x_1} = 5 + {x_2}}\\{{x_2}^2 + 5{x_2} + 6 = 0}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = 5 + {x_2}}\\{\left( {{x_2} + 2} \right)\left( {{x_2} + 3} \right) = 0}\end{array}} \right.\)

\(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_1} = 5 + {x_2}}\\{{x_2} + 2 = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{x_1} = 5 + {x_2}}\\{{x_2} + 3 = 0}\end{array}} \right.}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_1} = 3}\\{{x_2} = - 2}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{x_1} = 2}\\{{x_2} = - 3}\end{array}} \right.}\end{array}} \right.\)

TH1: x1 = 3 và x2 = −2 x1 + x2 = 1 = a

\(\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 6}\end{array}} \right.\)

TH2: x1 = 2 và x2 = −3 x1 + x2 = −1 = a

\(\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = - 6}\end{array}} \right.\)

Vậy các cặp (a,b) thỏa mãn là (1,−6) hoặc (−1,−6).


Câu 19:

Bỏ ngoặc rồi tính: 25 – (−17) + 24 – 12.

Xem đáp án

25 – (−17) + 24 – 12

= 25 + 17 + 24 – 12

= 54.


Câu 20:

Tìm x, y là số tự nhiên thỏa mãn phương trình \({2^x} + 3 = {y^2}.\)

Xem đáp án

Xét x = 0 ta có:

\({y^2} = 3 + {2^0} = 4\) y = 2 (do y là số tự nhiên)

Xét x = 1 ta có:

\({y^2} = 3 + 2 = 5\) Không có nghiệm y là số tự nhiên thỏa mãn

Xét x > 1 ta có:

\({2^x} \ge 4\) 2x 4

Do đó 2x + 3 chia 4 dư 3, mà y2 là số chính phương chia 4 chỉ dư 0 hoặc 1

x > 1, phương trình có nghiệm x, y là số tự nhiên thỏa mãn.

Vậy (x,y) = (0,2) là nghiệm duy nhất.


Câu 21:

Trong không gian Oxyz, cho mặt phẳng (P) : x – 2y + 2z + 6 = 0 và các điểm A(−1; 2; 3), B(3; 0; −1), C(1; 4; 7). Tìm điểm M thuộc (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.

Xem đáp án

Gọi G là trọng tâm tam giác ABC có tọa độ là G(1; 2; 3).

Ta có: \(M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)

\( = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)

\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)

\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\)

MA2 + MB2 + MC2 đạt giá trị nhỏ nhất MG nhỏ nhất (do GA2 + GB2 + GC2 không đổi)

M là hình chiếu của G trên (P)

Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n \left( {1; - 2;2} \right).\)

GM vuông góc với (P) nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương.

Phương trình của GM là: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 - 2t}\\{z = 3 + 2t}\end{array}} \right..\)

Tọa độ của điểm M(1 + t; 2 – 2t; 3 + 2t) thỏa mãn:

(1 + t) – 2(2 – 2t) + 2(3 + 2t) + 6 = 0 \(t = - \frac{{11}}{9}.\)

\(M\left( { - \frac{2}{9};\frac{{40}}{9};\frac{5}{9}} \right).\)

Vậy \(M\left( { - \frac{2}{9};\frac{{40}}{9};\frac{5}{9}} \right)\) thì MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.


Câu 22:

Có bao nhiêu giá trị của m để giá trị lớn nhất của hàm số y = |−x4 + 8x2 + m| trên đoạn [−1; 3] bằng 2018?

Xem đáp án

Xét hàm số y = f(x) = −x4 + 8x2 + m trên đoạn [−1; 3]:

\(y' = f'\left( x \right) = - 4{x^3} + 16x\)

\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \pm 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\) (loại x = −2 vì −2 [−1; 3])

Có bao nhiêu giá trị của m để giá trị lớn nhất của hàm số y = |-x^4 + 8x^2 + m| trên (ảnh 1)

Từ bảng biến thiên hàm số y = f(x) = −x4 + 8x2 + m ta thấy:

\[\mathop {\max }\limits_{\left[ { - 1;\,\,3} \right]} \left| {f\left( x \right)} \right| = \max \left\{ {\left| {7 + m} \right|;\,\,\left| m \right|;\,\,\left| {16 + m} \right|;\,\,\left| { - 9 + m} \right|} \right\} = 2018\]

TH1: \(\mathop {\max }\limits_{\left[ { - 1;\,3} \right]} \left| {f\left( x \right)} \right| = \left| {7 + m} \right| = 2018 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2011}\\{m = - 2025}\end{array}} \right.\)

m = 2011 |16 + m| = 2027 > 2018 (loại)

m = −2025 |−9 + m| = 2034 > 2018 (loại)

TH2: \(\mathop {\max }\limits_{\left[ { - 1;\,3} \right]} \left| {f\left( x \right)} \right| = \left| m \right| = 2018 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2018}\\{m = - 2018}\end{array}} \right.\) (loại)

TH3: \(\mathop {\max }\limits_{\left[ { - 1;\,3} \right]} \left| {f\left( x \right)} \right| = \left| {16 + m} \right| = 2018 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2002}\\{m = - 2034}\end{array}} \right.\)

m = 2002 (thỏa mãn)

m = −2034 |−9 + m| = 2025 > 2018 (loại)

TH4: \(\mathop {\max }\limits_{\left[ { - 1;\,3} \right]} \left| {f\left( x \right)} \right| = \left| { - 9 + m} \right| = 2018 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 2027}\\{m = - 2009}\end{array}} \right.\)

m = 2027 |m| = 2027 > 2018 (loại)

m = − 2009 |m| = 2009 < 2018 (thỏa mãn)

Vậy có 2 giá trị của m thỏa mãn đề bài.


Câu 24:

Cho một đa giác đều n đỉnh, n ℕ, n ≥ 3. Tìm n biết rằng đa giác đã cho có 27 đường chéo.

Xem đáp án

Với hai đỉnh sẽ cho ta một đoạn thẳng, do đó số đoạn thẳng được tạo ra từ n đỉnh là \(C_n^2.\)

Đa giác có n đỉnh sẽ có n cạnh. Trong số \(C_n^2\) đoạn thẳng có n đoạn thẳng là cạnh của đa giác. Do đó số đường chéo của đa giác là \(C_n^2 - n = \frac{{n\left( {n - 3} \right)}}{2}.\)

Theo đề bài ta có phương trình sau

\(\frac{{n\left( {n - 3} \right)}}{2} = 27 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 9}\\{n = - 6}\end{array}} \right.\)

Do n ℕ, n ≥ 3 n = 9.


Câu 25:

Cho tam giác ABC có A(−5; 6), B(1; −3), C(−1; 1). Tìm tọa độ trung điểm H của BC.

Xem đáp án

Trung điểm H của BC có tọa độ là \(H\left( {\frac{{{x_B} + {x_C}}}{2};\frac{{{y_B} + {y_C}}}{2}} \right)\)

\(H\left( {\frac{{1 - 1}}{2};\frac{{ - 3 + 1}}{2}} \right)\) \(H\left( {0; - 1} \right).\)

Vậy H(0; −1).


Câu 26:

Cho tam giác ABC vuông tại A.

a) Giả sử \(\widehat B = 54^\circ .\) Tính góc C.

b) Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MA = MN. Chứng minh AB // NC.

Xem đáp án
Cho tam giác ABC vuông tại A.  a) Giả sử góc B = 54 độ. Tính góc C. b) Gọi M là (ảnh 1)

a) Vì tam giác ABC vuông tại A \(\widehat {BAC} = 90^\circ .\)

Xét tam giác ABC có:

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \)

\(\widehat {ACB} = 180^\circ - 54^\circ - 90^\circ = 36^\circ \)

b) Xét \(\Delta ABM\)\(\Delta NCM\) có:

AM = MN

MB = MC (do M là trung điểm BC)

\(\widehat {NMC} = \widehat {AMB}\) (đối đỉnh)

Do đó \(\Delta ABM = \Delta NCM\left( {c.g.c} \right)\)

Suy ra \(\widehat {ABM} = \widehat {NCM}\) (2 góc tương ứng)

Vậy AB // NC (do 2 góc so le trong) (đpcm)


Câu 27:

Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Xem đáp án
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông (ảnh 1)

a) Tam giác ABC vuông tại A \(\widehat {BAC} = 90^\circ .\)

Vì HE AB, HF AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)

Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)

Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Vì AEHF là hình chữ nhật EH // AF và EH = AF (tính chất hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD AF = FD.

EH // FD và EH = FD.

DHEF là hình bình hành (dấu hiệu nhận biết)

c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC \(\Delta AMC\) cân tại M

\(\widehat {MAC} = \widehat {MCA}\)

Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo \(\widehat {IAF} = \widehat {IFA}\)

Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)

Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]

EF AM tại O hay IF AM tại O.

Xét \(\Delta KAM\) có: GM KA; AH KM.

Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)

Suy ra KI AM mà IF AM.

Do đó K, I, F thẳng hàng.

Ta có:

• Ba điểm E, I, F thẳng hàng.

• Ba điểm K, I, F thẳng hàng.

Do đó bốn điểm I, K, E, F thẳng hàng.


Câu 28:

Cho x, y, z là 3 số thực thay đổi thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt y }} + \frac{1}{{\sqrt z }}.\)

Xem đáp án

Áp dụng BDT Cô – si, ta có:

\(P = \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt y }} + \frac{1}{{\sqrt z }} \ge 3\sqrt[3]{{\frac{1}{{\sqrt {xyz} }}}}\)

\(\sqrt[3]{{xyz}} \le \frac{{x + y + z}}{3} = 1\)

P ≥ 3.

Vậy giá trị nhỏ nhất của P = 3 x = y = z = 1.


Câu 29:

Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh:

a) Tứ giác ABHM nội tiếp.

b) OA.OB = OH.OM = R2.

c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.

d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Xem đáp án
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d  (ảnh 1)

a) Do ME, MF là tiếp tuyến của đường tròn (O) EF OM.

Tứ giác ABHM có \(\widehat {BHM} = \widehat {MAB} = 90^\circ \) nên tứ giác ABHM là tứ giác nội tiếp đường tròn có bán kính BM.

b) Xét \(\Delta OHB\)\(\Delta OAM\) có:

\(\widehat O\) chung

\(\widehat {OHB} = \widehat {OAM} = 90^\circ \)

Do đó ∆OHB ∆OAM (g.g)

Suy ra \(\frac{{OH}}{{OA}} = \frac{{OB}}{{AM}}\) hay OH.OM = OA.OB         (1)

Xét \(\Delta OHE\)\(\Delta OEM\) có:

\(\widehat O\) chung

\(\widehat {OHE} = \widehat {OEM} = 90^\circ \)

Do đó ∆OHE ∆OEM (g.g)

Suy ra \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OM}}\) hay OH.OM = OE2 = R2       (2)

Từ (1) và (2) suy ra OA.OB = OH.OM = R2.

c) Gọi I là giao điểm của OM với đường tròn (O). Nối FI.

Do FI = EI \[\Delta EFI\] cân tại I \(\widehat {MFI} = \widehat {EFI}\)

IF là tia phân giác của góc \(\widehat {MFE}\)

mà MI là tia phân giác của góc \(\widehat {EMF}\)

Do đó I là giao điểm của đường phân giác trong của tam giác MEF

I là tâm đường tròn nội tiếp tam giác MEF

Mà I thuộc đường tròn (O) cố định.

Vậy tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.

d) Ta có: \({S_{HBO}} = \frac{1}{2}HO.HB\)

Ta có ∆OHB ∆OAM (cmt) suy ra \(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\)

Hay HB.OM = AM.OB   (3)

Mà OH.OM = R2            (4)

Nhân (3) và (4) theo vế với vế, ta được:

OH.HB.OM2 = R2.AM.OB = \({R^2}.AM.\frac{{{R^2}}}{{OA}}\)

\(OH.HB = {R^4}.\frac{{AM}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA\left( {O{A^2} + A{M^2}} \right)}}\)

Áp dụng BDT Cô – si ta có: \(O{A^2} + A{M^2} \ge 2.OA.AM\)

Dấu “=” xảy ra khi và chỉ khi OA = AM

\(OH.HB \le \frac{{{R^4}}}{{OA.2.OA.OM}} = \frac{{{R^4}}}{{2O{A^2}}}\)

\({S_{\max }} = \frac{{{R^4}}}{{4O{A^2}}}\) OA = AM.


Câu 30:

Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.

a) Chứng minh: tứ giác AOHC nội tiếp.

b) Chứng minh: AC.AE = AD.CE.

c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh: AM // BN.

Xem đáp án
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là (ảnh 1)

a) Ta có: \(\widehat {CAB} = \widehat {OHC} = 90^\circ \) \(\widehat {CAB} + \widehat {OHC} = 180^\circ \).

Do đó tứ giác AHOC nội tiếp.

b) Xét \(\Delta ACD\)\(\Delta ECA\) có:

\(\widehat {CAD} = \widehat {AEC}\)

\(\widehat {ACE}\) chung

Do đó ∆ACD ∆ECA (g.g)

Suy ra \(\frac{{CA}}{{CE}} = \frac{{AD}}{{AE}}\) hay AC.AE = AD.CE.

c) Từ E kẻ đường thẳng song song với MN cắt AB tại I và BD tại F

\(\widehat {HEI} = \widehat {HCO}\)

Vì tứ giác AOHC nội tiếp \(\widehat {HAO} = \widehat {HCO} = \widehat {HEI}\)

Suy ra tứ giác AHIE nội tiếp

\(\widehat {IHE} = \widehat {IAE} = \widehat {BDE}\)

IH // BD

mà H là trung điểm của DE

I là trung điểm của EF

EF // MN và IE = IF

O là trung điểm của MN

Tứ giác AMBN là hình bình hành

AM // BN (đpcm)


Câu 31:

Làm phép tính sau: 2 357 × 24.

Xem đáp án

2357 × 24 = 2357 × (20 + 4)

= 2357 × 20 + 2357 × 4

= 47 410 + 9 428

= 56 838.

Vậy 2 357 × 24 = 56 838.


Câu 32:

Giải phương trình: \(4\sqrt {x + 1} = {x^2} - 5x + 14.\)

Xem đáp án

Ta có: \(4\sqrt {x + 1} = {x^2} - 5x + 14\) (ĐK: x ≥ −1)

\(4\sqrt {x + 1} - 8 = {x^2} - 5x + 6\)

\(4\left( {\sqrt {x + 1} - 2} \right) = {x^2} - 5x + 6\)

\(\frac{{4\left( {x - 3} \right)}}{{\left( {\sqrt {x + 1} - 2} \right)}} = \left( {x - 2} \right)\left( {x - 3} \right)\)

\(\left( {x - 3} \right)\left( {\frac{4}{{\sqrt {x + 1} - 2}} - x + 2} \right) = 0\)

x – 3 = 0

x = 3 (thỏa mãn)

Vậy phương trình đã cho có nghiệm x = 3.


Câu 33:

Một mảnh đất hình chữ nhật có chiều dài là 38m, chiều rộng bằng \[\frac{3}{4}\] chiều dài, trong đó diện tích đất làm nhà chiếm 25%. Tính:

a) Diện tích của mảnh đất đó.

b) Diện tích đất làm nhà là bao nhiêu mét vuông?

Xem đáp án

a) Chiều rộng mảnh đất là:

\(38 \times \frac{3}{4} = 28,5\) (m)

Diện tích mảnh đất là:

28,5 ´ 38 = 1083 (m2)

b) Diện tích đất làm nhà:

1083 ´ 25% = 270,75 (m2)

Đáp số:

a) 1083 m.

b) 270,75 m2.


Câu 34:

Một mảnh đất hình chữ nhật có chiều dài là 40m, chiều rộng bằng \(\frac{1}{2}\) chiều dài, trong đó diện tích đất làm nhà chiếm 30%. Tính:

a) Diện tích của mảnh đất đó.

b) Diện tích đất làm nhà là bao nhiêu mét vuông?

Xem đáp án

a) Chiều rộng mảnh đất là:

\(40 \times \frac{1}{2} = 20\) (m)

Diện tích mảnh đất là:

20 ´ 40 = 800 (m2)

b) Diện tích đất làm nhà:

800 ´ 30% = 240 (m2)

Đáp số: a) 800 m;

    b) 240 m2.


Câu 35:

Tìm số \(\overline {abc} \). Biết \(\overline {abc} \) chia hết cho 45 và \(\overline {abc} - \overline {cba} = 396\) (với c ≠ 0).

Xem đáp án

\(\overline {abc} \) chia hết cho 45 nên \(\overline {abc} \) chia hết cho 5 và 9 nên c = 0 hoặc 5 mà c ≠ 0 nên c = 5.

Ta có: \(\overline {ab5} - \overline {5ba} = 396\)

Ta viết lại biểu thức như sau: \(396 + \overline {5ba} = \overline {ab5} \)

6 + a tận cùng là 5 nên a = 9

Nên ta lại có: \(\overline {abc} = \overline {9b5} \) chia hết cho 9 và 5.

Nên 9 + b + 5 chia hết cho 9, nên b = 4.

Suy ra \(\overline {abc} = 945\)


Câu 36:

Cho \(\overline {abc} + \overline {\deg } \) chia hết cho 37. Chứng minh rằng \(\overline {abc\deg } \) chia hết cho 37.

Xem đáp án

Ta có: \(\overline {abc\deg } = \overline {abc} .1000 + \overline {\deg } = 999.\overline {abc} + \overline {abc} + \overline {\deg } \)

\( = 32.27\overline {abc} + \left( {\overline {abc} + \overline {\deg } } \right)\)

Do \(37.27.\overline {abc} \) chia hết cho 37

\(\overline {abc\deg } \) chia hết cho 37 với \(\overline {abc} + \overline {\deg } \) chia hết cho 37.


Câu 37:

Cho x, y, z > 0 và xyz = 1. CMR: \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\)?

Xem đáp án

Áp dụng BĐT cô-si:

\(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{1 + y + 1 + z + 1 + x}} = \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)

Áp dụng BĐT cô-si: \(x + y + z \ge 3\sqrt[3]{{xyz}} = 3\)

Do đó: \(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)

\( \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + \left( {x + y + z} \right)}} = \frac{{x + y + z}}{2} \ge \frac{3}{2}\)

Dấu “=” xảy ra khi và chỉ khi x = y = z = 1.

Vậy \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\), dấu “=” xảy ra khi và chỉ khi x = y = z = 1.


Câu 38:

Cho x, y, z > 0 và x3 + y3 + z3 = 1. Chứng minh rằng:

\[\frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} + \frac{{{y^2}}}{{\sqrt {1 - {y^2}} }} + \frac{{{z^2}}}{{\sqrt {1 - {z^2}} }} \ge 2\].

Xem đáp án

Theo BĐT cô-si ta có: \(\frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{{x^3}}}{{x\sqrt {1 - {x^2}} }} \ge \frac{{{x^3}}}{{\frac{{{x^2} + 1 - {x^2}}}{2}}} = 2{x^3}\)

Chứng minh tương tự: \(\frac{{{y^2}}}{{\sqrt {1 - {y^2}} }} \ge 2{y^3}\); \(\frac{{{z^2}}}{{\sqrt {1 - {z^2}} }} \ge 2{z^3}\).

Cộng vế với vế các bất đẳng thức trên ta có:

\(\frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} + \frac{{{y^2}}}{{\sqrt {1 - {y^2}} }} + \frac{{{z^2}}}{{\sqrt {1 - {z^2}} }} \ge 2\left( {{x^3} + {y^3} + {z^3}} \right) = 2\) (đpcm)


Câu 39:

Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là

Xem đáp án

Đáp án đúng là: D.

Hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có 2 điểm cực trị đồng thời y(x1).y(x2) = 0 khi và chỉ khi phương trình 3x3 + 2(m + 1)x2 – 3mx + m – 5 = 0 (1) có đúng 2 nghiệm phân biệt.

Ta có: 3x3 + 2(m + 1)x2 – 3mx + m – 5 = 0

(x – 1)[3x2 + (2m + 5)x + 5 – m] = 0

\[\left[ \begin{array}{l}x = 1\\3{x^2} + (2m + 5)x + 5 - m = 0(*)\end{array} \right.\]

(1) có đúng 2 nghiệm phân biệt khi và chỉ khi:

TH1: (*) có nghiệm kép khác 1.

\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right) = 0\\3 + 2m + 5 + 5 - m \ne 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 = 0\\m \ne - 13\end{array} \right. \Leftrightarrow m = \frac{{ - 8 \pm 3\sqrt {11} }}{2}\)

TH2: (*) có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 1.

\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right)\\3 + 2m + 5 + 5 - m = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 > 0\\m = - 13\end{array} \right.\)

m = −13

Vậy có 3 giá trị m thỏa mãn. Khi đó tổng của các giá trị m là:

\(\frac{{ - 8 + 3\sqrt {11} }}{2} + \frac{{ - 8 - 3\sqrt {11} }}{2} - 13 = - 21\).


Câu 40:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Xem đáp án

Hàm số đã cho xác định trên ℝ khi và chỉ khi x2 – 3mx + 4 ≥ 0, \(\forall \)x ℝ.

∆ = 9m2 – 16 ≤ 0

\( \Leftrightarrow {m^2} \le \frac{{16}}{9}\)

\( \Leftrightarrow \frac{{ - 4}}{3} \le m \le \frac{4}{3}\)

Vậy với \(\frac{{ - 4}}{3} \le m \le \frac{4}{3}\) thì thỏa mãn yêu cầu bài toán.


Câu 41:

Để lát nền một căn phòng có dạng hình vuông có chu vi là 80 dm. Người ta phải dùng các viên gạch hình vuông để lát, mỗi viên gạch có độ dài cạnh 2 dm và có giá là 25 000 đồng/viên. Tính số viên gạch cần dùng và số tiền mua gạch để lát nền căn phòng đó.

Xem đáp án

Độ dài cạnh của căn phòng là:

80 : 4 = 20 (dm)

Diện tích căn phòng là:

20 ´ 20 = 400 (dm2)

Diện tích 1 viên gạch là:

2 ´ 2 = 4 (dm2)

Để lát nền căn phòng cần số viên gạch là:

400 : 4 = 100 (viên)

Số tiền mua gạch để lát nền là:

25 000 ´ 100 = 2500 000 (đồng)

Đáp số: 2 500 000 đồng


Câu 43:

Phân số thập phân thích hợp điền vào chỗ chấm:

a) 0,7% = …

b) 50% = …

Xem đáp án

a) \(0,7\% = \frac{{0,7}}{{100}} = \frac{7}{{1000}}\).

b) \(50\% = \frac{{50}}{{100}} = \frac{5}{{10}}\)


Câu 45:

Bạn Sơn tạo các hình bằng những chiếc tăm giống nhau theo sơ đồ nhứ hình trên (Hình thứ n có n2 ô vuông giống nhau và mỗi cạnh hình vuông là một chiếc tăm). Hỏi Sơn phải thêm bao nhiêu chiếc tăm vào hình thứ 2018 để được hình thứ 2019.

Bạn Sơn tạo các hình bằng những chiếc tăm giống nhau theo sơ đồ nhứ hình trên (Hình (ảnh 1)
Xem đáp án

• Với n = 1 ta có hình 12 = 1 ô vuông và cần dùng 4 = 2.1.(1 + 1) (chiếc tăm).

• Với n = 2 ta có hình 22 = 4 ô vuông và cần dùng 12 = 2.2.(2 + 1) (chiếc tăm).

• Với n = 3 ta có hình 32 = 9 ô vuông và cần dùng 24 = 2.3.(3 + 1) (chiếc tăm).

Như vậy mỗi số n ta có n2 và cần dùng 2n(n + 1) chiếc tăm để tạo thành.

• Với n = 2018 ta có: 20182 ô vuông và cần 2 . 2018 . 2019 (chiếc tăm).

• Với n = 2019 ta có: 20192 ô vuông và cần 2 . 2019 . 2020 (chiếc tăm).

Vậy từ hình thứ 2018 đến 2019 ta cần thêm số chiếc tăm là:

2 . 2019 . 2020 – 2 . 2018 . 2019 = 8 076 (chiếc tăm)

Đáp số: 8076 chiếc tăm


Câu 46:

Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là:

Xem đáp án

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD)  (ảnh 1)

Vì AB//CD nên (SAB) cắt (SCD) theo giao tuyến là đường thẳng Sx, Sx//AB//CD.


Câu 47:

Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của mp(SAD) và mp(SBC) là đường thẳng song song với đường thẳng nào trong số các đường thẳng sau?

Xem đáp án
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của mp(SAD) và mp (ảnh 1)

Xét (SAD) và (SBC) có:

S là điểm chung

AD // BC

Do đó giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD.


Câu 48:

Tính đạo hàm của hàm số sau: \(y = \sqrt {x + \sqrt {{x^2} - x + 1} } \).

Xem đáp án

Ta có: \(y' = {\left( {\sqrt {x + \sqrt {{x^2} - x + 1} } } \right)^\prime }\)

\( = \frac{1}{{2\sqrt {x + \sqrt {{x^2} - x + 1} } }}{\left( {x + \sqrt {{x^2} - x + 1} } \right)^\prime }\)

\( = \frac{1}{{2\sqrt {x + \sqrt {{x^2} - x + 1} } }}\left( {1 + \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}} \right)\)

\( = \frac{{2\sqrt {{x^2} - x + 1} + 2x - 1}}{{4\sqrt {x + \sqrt {{x^2} - x + 1} .\sqrt {{x^2} - x + 1} } }}\).


Câu 49:

Tính đạo hàm số \(y = n\left( {x + \sqrt {{x^2} + 1} } \right)\)

Xem đáp án

Đáp án đúng là: A.

\(y' = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^\prime }}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)

\( = \frac{{1 + \frac{{2x}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)

\( = \frac{{\sqrt {{x^2} + 1} + x}}{{\sqrt {{x^2} + 1} \left( {x + \sqrt {{x^2} + 1} } \right)}} = \frac{1}{{\sqrt {{x^2} + 1} }}\).


Câu 50:

Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Xem đáp án

y = (m – 2)x + 3 (d)

Giả sử I(x0; y0) là điểm cố định mà (d) luôn đi qua.

Khi đó ta có:

y0 = (m – 2)x0 + 3

y0 = mx0 – 2x0 + 3

mx0 = y0 + 2x0 – 3

\(\left\{ \begin{array}{l}{x_0} = 0\\2{x_0} + {y_0} - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\{y_0} = 3\end{array} \right.\)


Câu 51:

Cho hàm số y = (2m – 3)x + m – 1. Chứng minh rằng đồ thị hàm số đi qua điểm cố định với mọi giá trị của m. Tìm điểm cố định ấy.

Xem đáp án

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

y0 = (2m – 3)x0 + m – 1

y0 = 2mx0 – 3x0 + m – 1

y0 – 2mx0 – 3x0 + m – 1 = 0

m(–2x0 + 1) + (y0 – 3x0 – 1) = 0

\[ \Rightarrow \left\{ \begin{array}{l} - 2{x_0} + 1 = 0\\{y_0} - 3{x_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{5}{2}\end{array} \right.\]

\( \Rightarrow M\left( {\frac{1}{2};\frac{5}{2}} \right)\)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua mọt điểm M cố định có tọa độ \(M\left( {\frac{1}{2};\frac{5}{2}} \right)\).

Câu 52:

Tìm x, biết: \(\frac{{{8^x}}}{{{2^x}}} = 4\).

Xem đáp án

\(\frac{{{8^x}}}{{{2^x}}} = 4\)

\({\left( {\frac{8}{2}} \right)^x} = 4\)

4x = 4

x = 1

Vậy x = 1.


Câu 53:

Viết kết quả phép tính dưới dạng một lũy thừa.

a) 32.93;

b) 22.52;

c) 85.23;

d) 98 : 32.

Xem đáp án

a) 32 . 93 = 32 . (32)3 = 32 . 36 = 38;

b) 22.52 = (2.5)2 = 102;

c) 85 . 23 = (23)5 . 23 = 215 . 23 = 218;

d) 98 : 32 = (32)8 : 32 = 316 : 32 = 314.


Câu 54:

Cho ABC nhọn các đường cao AD và BE cắt tại H. Gọi M là trung điểm BC. P đối xứng với H qua BC, Q đối xứng với H qua M.

a) PQ // BC. Tứ giác DMQP là hình gì?

b) Chứng minh rằng: HCQB là hình bình hành.

Xem đáp án
Cho tam giác ABC nhọn các đường cao AD và BE cắt tại H. Gọi M là trung điểm BC (ảnh 1)

a) Vì H đối xứng với P qua BC nên BC là đường trung trực của HP, hay HPBC tại trung điểm của HP.

Suy ra D là trung điểm của HP nên \(\frac{{HD}}{{PQ}} = 1\)            (1)

Mặt khác: H đối xứng với Q qua M nên M là trung điểm của HQ nên \(\frac{{HM}}{{MQ}} = 1\)     (2)

Từ (1) và (2) suy ra \(\frac{{HD}}{{DP}} = \frac{{HM}}{{MQ}}\)

Theo định lý Talet đảo thì DM // PQ hay BC // PQ (đpcm)

Tứ giác DMQP có DM // PQ và \(\widehat D = 90^\circ \) do HPBC tại D

Do đó tứ giác DMQP là hình thang vuông.

b) Tứ giác HCQB có hai đường chéo BC, HQ cắt nhau tại trung điểm M của mỗi đường nên suy ra HCQB là hình bình hành (đpcm).


Câu 55:

Chứng minh rằng \(\frac{{3n + 4}}{{2n + 3}}\) là phân số tối giản.

Xem đáp án

Gọi ƯCLN(3n + 4; 2n + 3) = d

Ta có: 3n + 4 d.

2n + 3 d

(2n + 3) – (3n + 4) d

3(2n + 3) – 2(3n + 4) d

6n + 9 – 6n – 8 d

1 d

d = ± 1

Vì ƯCLN(3n + 4; 2n + 3) = 1 nên \[\frac{{3n + 4}}{{2n + 3}}\] là phân số tối giản.


Câu 56:

Chứng minh rằng với mọi số nguyên n thì phân số \(\frac{{{n^3} + 2n}}{{{n^4} + 3{n^2} + 1}}\) là phân số tối giản.

Xem đáp án

Gọi d = ƯCLN (n3 + 2n, n4 + 3n2 + 1)

Ta có: n3 + 2n d

n(n3 + 2n) d

n4 + 2n2 d (1)

(n4 + 3n2 + 1) – (n4 + 2n2) d

n2 + 1 d

(n2 + 1)2 = n4 + 2n2 + 1 d    (2)

Từ (1) và (2) suy ra:

(n4 + 2n2 + 1) – (n4 + 2n2) d

1 d d = ± 1

Vậy \(\frac{{{n^3} + 2n}}{{{n^4} + 3{n^2} + 1}}\) là phân số tối giản.


Câu 57:

Cho hàm số y = mx3 – mx2 – (m +4)x + 2. Xác định m để hàm số đã cho nghịch biến trên ℝ.

Xem đáp án

Ta xét trường hợp hàm số suy biến. Khi m = 0, hàm số trở thành y = −x + 2. Đây là hàm bậc nhất nghịch biến trên ℝ. Vậy m = 0 thỏa mãn yêu cầu bài toán.

Với m ≠ 0, hàm số là hàm đa thức bậc 3.

Y’ = 3mx2 – 2mx2 – (m + 4)

Do đó hàm số nghịch biến trên ℝ khi và chỉ khi:

\(\left\{ \begin{array}{l}m < 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\{m^2} + 3m\left( {m + 4} \right) \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\4{m^2} + 12m \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\ - 3 \le m \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\ - 3 \le m \le 0\end{array} \right.\) −3 ≤ m < 0.

Kết hợp 2 trường hợp ta được −3 ≤ m ≤ 0 0 thỏa mãn yêu cầu bài toán.


Câu 58:

Cho hàm số y = x3 – (m + 1)x2 – (m2 – 2m)x + 2020. Tìm m để hàm số nghịch biến trên khoảng (0; 1).

Xem đáp án

Ta có:

Y’ = 3x2 – 2(m + 1)x – (m2 – 2m)

Khi đó y’ = 0

3x2 – 2(m + 1)x – (m2 – 2m) = 0

\( \Leftrightarrow \left[ \begin{array}{l}x = m\\x = \frac{{m - 2}}{3}\end{array} \right.\)

Hàm số đã cho nghịch biến trên khoảng (0; 1) khi và chỉ khi:

\(\left[ \begin{array}{l}m \le 0 < 1 \le \frac{{m - 2}}{3}\\\frac{{m - 2}}{3} \le 0 < 1 \le m\end{array} \right. \Leftrightarrow 1 \le m \le \frac{3}{2}\)

Vậy với \(1 \le m \le \frac{3}{2}\) thỏa mãn yêu cầu bài toán.


Câu 59:

Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn z(1 + i) là số thực là:

Xem đáp án

Đáp án đúng là: C.

Giả sử ta có số phức z = x + yi. Ta có:

Z(1 + i) = (x + yi)(1 + i) = (x – y) + (x + y)i

Z(1 + i) là số thực khi x + y = 0 hay y = −x.


Câu 60:

Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \(z.\overline z = 1\)

Xem đáp án

Đặt z = a + bi \( \Rightarrow \overline z = a - bi\)

Ta có: \(z.\overline z = 1\)

(a + bi)(a – bi) = 1

a2 – b2i2 = 1

a2 + b2 = 1

Vậy tập hợp các số thực thỏa mãn điều kiện trên là một đường tròn có tâm là gốc tọa độ và có bán kính là 1 đvđt.


Câu 61:

Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.

Xem đáp án

Ta có: sin2a + cos2a = 1

cos2a = 1 – sin2a

cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)

\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)

\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)

Mà a là góc tù nên cosa < 0

\( \Rightarrow \cos a = - \frac{3}{5}\)

\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)

\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)

Vậy \(A = \frac{{11}}{5}\).


Câu 62:

Cho hình chóp S.ABCD, đáy là hình bình hành tâm O. Gọi M, N, P, Q lần lượt là trung điểm SA, SB, SC và SD. Tìm giao tuyến của (MNPQ) và (SAC).

Xem đáp án

Đáp án đúng là: D.

Cho hình chóp S.ABCD, đáy là hình bình hành tâm O. Gọi M, N, P, Q lần lượt là  (ảnh 1)

Ta có: M SA M (SAC)

M (MNPQ)

M (SAC) ∩ (MNPQ)        (1)

Mặt khác:

P (SC) P (SAC)

P (MNPQ)

P (SAC) ∩ (MNPQ)          (2)

Từ (1) và (2) suy ra (MNPQ) ∩ (SAC) = MP.


Câu 63:

Cho hình chóp S.ABCD là hình bình hành tâm O. M, N, P lần lượt là trung điểm của AD, SA, SB.

a) Tìm giao tuyến của (MNP) và (SAB).

b) Tìm giao tuyến của (MNP) và (SBD).

Xem đáp án
Cho hình chóp S.ABCD là hình bình hành tâm O. M, N, P lần lượt là trung điểm (ảnh 1)

a) Xét tam giác SAB có NP là đường trung bình nên NP (SAB)

Mà NP  (MNP).

Do đó NP là giao tuyến của (MNP) và (SAB).

b) Gọi H là trung điểm của BC

Suy ra MH là đường trung bình ở hình bình hành ABCD đi qua tâm O.

Mà (MNP)  (MNPH)

MH ∩ DB = {O}

Mà MH  (MNPH) và DB  (SDB)

Do đó (MNPH) ∩ (SDB) = O

Mặt khác ta có P \subset SB  (SDB)

Vậy PO là giao tuyến của (MNP) và (SBD).


Câu 64:

Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)

Xem đáp án

Đáp án đúng là: C

Ta có đỉnh I(1; −1) \( - \frac{b}{{2a}} = 1\) (1)

a + b + c = −1 (2)

Đồ thị hàm số đi qua A(2 ; 0)

4a + 2a + c = 0 (3)

Từ (1); (2) và (3) ta có: a = 1; b = −2; c = 0.

Vậy hàm số cần tìm là: y = x2 – 2x.


Câu 65:

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Xem đáp án

Đáp án đúng là: D

Vì hàm số cần tìm có đỉnh là I(−1; −2) nên \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = - 1\\2 - b + c = - 2\end{array} \right.\)

Mà a = 2 nên \(\left\{ \begin{array}{l}b = 4\\c = 0\end{array} \right.\)

Vậy hàm số cần tìm là: 2x2 + 4x.


Câu 66:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác vẽ các hình vuông ABDE, ACFG và BCHI. Ta có:

Xem đáp án

Đáp án đúng là: B

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác vẽ các hình vuông ABDE, ACFG  (ảnh 1)

Ta có: SBCHI = BC2; SACFG = AC2; SABDE = AB2.

Theo định lý Py-ta-go cho tam giác ABC vuông tại A ta có: BC2 = AB2 + AC2

SBCHI = SACFG + SABDE


Bắt đầu thi ngay