Bài tập Xác suất của biến cố trong một số trò chơi đơn giản có đáp án
-
174 lượt thi
-
13 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
A. Các câu hỏi trong bài
Quan sát đồng xu ở Hình 5 ta quy ước: mặt xuất hiện số 5 000 là mặt sấp hay mặt S; mặt xuất hiện Quốc huy Việt Nam là mặt ngửa hay mặt N. Tung một đồng xu cân đối và đồng chất hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt ngửa”.

Làm thế nào để tính được xác suất của biến cố nói trên?
Hướng dẫn giải
Sau bài học này, ta sẽ giải quyết được bài toán khởi động như sau:
Tung một đồng xu hai lần liên tiếp, không gian mẫu trong trò chơi này là tập hợp Ω = {SS; SN; NS; NN} nên n(Ω) = 4.
Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt ngửa”.
Các kết quả thuận lợi cho biến cố A là: SN, NN, NS, tức là A = {SN; NN; NS}, vì thế n(A) = 3.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\).
Câu 2:
Hướng dẫn giải
Tung 1 đồng xu 1 lần, các kết quả xảy ra có thể là xuất hiện mặt sấp (S) hoặc mặt ngửa (N).
Tung 1 đồng xu hai lần, các kết quả xảy ra có thể là: SS; SN; NS; NN.
Vậy Ω = {SS; SN; NS; NN}.
Câu 3:
Hướng dẫn giải
Kết quả của hai lần tung giống nhau, có nghĩa là cả hai lần đều ra mặt sấp hoặc cả hai lần đều ra mặt ngửa.
Sự kiện đã nêu bao gồm các kết quả SS; NN trong tập hợp Ω.
Vậy tập hợp A các kết quả có thể xảy ra đối với sự kiện trên là: A = {SS; NN}.
Câu 4:
Hướng dẫn giải
Ta có: Ω = {SS; SN; NS; NN} nên số phần tử của tập hợp Ω là 4.
A = {SS; NN} nên số phần tử của tập hợp A là 2.
Vậy tỉ số giữa số phần tử của tập hợp A và số phần tử của của tập hợp Ω là \(\frac{2}{4} = \frac{1}{2}\).
Câu 5:
Hướng dẫn giải
Không gian mẫu trong trò chơi trên là tập hợp Ω = {SS; SN; NS; NN} nên n(Ω) = 4.
Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt sấp”.
Các kết quả thuận lợi cho biến cố A là: SN, SS, NS, tức là A = {SN; SS; NS}, vì thế n(A) = 3.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\).
Câu 6:
Hướng dẫn giải
Khi gieo một con xúc xắc một lần, có 6 kết quả có thể xảy ra là xuất hiện mặt 1, 2, 3, 4, 5, 6 chấm.
Khi gieo một con xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, đó là:
(1; 1) (1; 2) (1; 3) (1; 4) (1; 5) (1; 6)
(2; 1) (2; 2) (2; 3) (2; 4) (2; 5) (2; 6)
(3; 1) (3; 2) (3; 3) (3; 4) (3; 5) (3; 6)
(4; 1) (4; 2) (4; 3) (4; 4) (4; 5) (4; 6)
(5; 1) (5; 2) (5; 3) (5; 4) (5; 5) (5; 6)
(6; 1) (6; 2) (6; 3) (6; 4) (6; 5) (6; 6)
Tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo là Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6}, trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.
Câu 7:
Hướng dẫn giải
Sự kiện đã nêu gồm các kết quả: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2) trong tập hợp Ω.
Tập hợp C các kết quả có thể xảy ra đối với sự kiện trên là:
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)}.
Câu 8:
Hướng dẫn giải
Khi gieo một con xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, do đó số phần tử của tập hợp Ω là 36.
Ta có C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} nên số phần tử của tập hợp C là 5.
Vậy tỉ số giữa số phần tử của tập hợp C và số phần tử của tập hợp Ω là \(\frac{5}{{36}}\).
Câu 9:
Hướng dẫn giải
Không gian mẫu trong trò chơi trên là tập hợp
Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},
trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.
Vậy n(Ω) = 36.
Gọi biến cố A: “Số chấm trong hai lần gieo đều là số nguyên tố”.
Các kết quả thuận lợi cho biến cố A là: (2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5), tức là A = {(2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5)}. Do đó, n(A) = 9.
Vậy xác xuất của biến cố A là: P(A) = \(\frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{9}{{36}} = \frac{1}{4}\).
Câu 10:
B. Bài tập
Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Kết quả của hai lần tung là khác nhau”.
Hướng dẫn giải
Không gian mẫu của trò chơi trên là tập hợp Ω ={SS; SN; NS; NN} nên n(Ω) = 4.
Gọi biến cố A: “Kết quả của hai lần tung là khác nhau”.
Các kết quả thuận lợi cho biến cố A là: SN, NS, tức là A = {SN; NS} nên n(A) = 2.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}.\)
Câu 11:
Tung một đồng xu ba lần liên tiếp.
a) Viết tập hợp Ω là không gian mẫu trong trò chơi trên.
b) Xác định mỗi biến cố:
A: “Lần đầu xuất hiện mặt ngửa”;
B: “Mặt ngửa xảy ra đúng một lần”.
Hướng dẫn giải
a) Tung một đồng xu ba lần liên tiếp.
Không gian mẫu trong trò chơi trên là tập hợp Ω = {SSS; SSN; SNS; SNN; NSS; NNS; NSN; NNN} nên n(Ω) = 8.
b)
Biến cố A: “Lần đầu xuất hiện mặt ngửa”.
Các kết quả thuận lợi cho biến cố A là: NSS, NNS, NSN, NNN.
Vậy A = {NSS; NNS; NSN; NNN}.
Biến cố B: “Mặt ngửa xảy ra đúng một lần”.
Các kết quả thuận lợi cho biến cố B là: SSN, SNS, NSS.
Vậy B = {SSN; SNS; NSS}.
Câu 12:
Gieo một xúc xắc hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:
A = {(6 ; 1); (6 ; 2); (6 ; 3); (6 ; 4); (6 ; 5); (6 ; 6)};
B = {(1 ; 6); (2 ; 5); (3 ; 4); (4 ; 3); (5 ; 2); (6 ; 1)};
C = {(1 ; 1); (2 ; 2); (3 ; 3); (4 ; 4); (5 ; 5); (6; 6)}.
Hướng dẫn giải
+ Ta thấy ở biến cố A, các kết quả đều có lần đầu xuất hiện mặt 6 chấm, lần hai xuất hiện các mặt lần lượt từ 1 chấm đến 6 chấm. Do đó, ta phát biểu biến cố A như sau:
Biến cố A: “Lần đầu xuất hiện mặt 6 chấm khi gieo xúc xắc”.
+ Ta có: 1 + 6 = 2 + 5 = 3 + 4 = 4 + 3 = 5 + 2 = 6 + 1 = 7, tổng số chấm trong hai lần gieo là 7. Do đó, ta phát biểu biến cố B như sau:
Biến cố B: “Tổng số chấm trong hai lần gieo bằng 7”.
+ Ta thấy các kết quả ở hai lần gieo là giống như nhau. Do đó, ta phát biểu biến cố C như sau:
Biến cố C: “Kết quả của hai lần gieo như nhau”.
Câu 13:
Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:
a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;
b) “Mặt 1 chấm xuất hiện ít nhất một lần”.
Hướng dẫn giải
Không gian mẫu trong trò chơi trên là tập hợp
Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},
trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.
Vậy n(Ω) = 36.
a) Gọi biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.
(Không bé hơn 10, có nghĩa là lớn hơn hoặc bằng 10).
Các kết quả thuận lợi cho biến cố A là: (4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6).
Hay A = {(4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6)}.
Vì thế n(A) = 6.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}.\)
b) Gọi biến cố B: “Mặt 1 chấm xuất hiện ít nhất một lần”.
Các kết quả thuận lợi cho biến cố B là: (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1).
Hay B = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1)}. Vì thế n(B) = 11.
Vậy xác xuất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}.\)