IMG-LOGO
Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 5. Phương trình đường tròn có đáp án

Trắc nghiệm Toán 10 Bài 5. Phương trình đường tròn có đáp án

Trắc nghiệm Toán 10 Bài 5. Phương trình đường tròn có đáp án

  • 532 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 25\] là:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\]

\[ \Rightarrow \]Tâm I (1; 3), bán kính R =\[\sqrt {25} \]= 5.


Câu 2:

Cho đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 4\]có tọa độ tâm I(a; b) và bán kính R = c. Nhận xét nào sau đây đúng về a, b và c:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 4\]

\[ \Rightarrow \]I (0; 4); \[R = \sqrt 4 \]= 2.

a = 0, b = – 4, c = 2

Khi đó ta có nhận xét: a + b = 0 + (– 4) = – 4 = – 2c.


Câu 3:

Cho phương trình x2 + y2 – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình đường tròn khi a2 + b2 > c.


Câu 4:

Tọa độ tâm I và bán kính R của đường tròn (C): x2 + y2 = 16 là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có: (C): x2 + y2 = 16

\[ \Rightarrow \]I (0; 0); R = \[\sqrt {16} \] = 4.


Câu 5:

Đường tròn (C): x2 + y2 – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có: (C): x2 + y2 – 8x + 2y + 6 = 0 x2 + y2 – 2.4x – 2.(– 1)y + 6 = 0

a = 4; b = – 1 và c = 6

I (4; – 1), \[R = \sqrt {{3^2} + {{\left( { - 1} \right)}^2} - 6} = \]\[\sqrt {11} \].


Câu 6:

Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) phải thoả mãn hai điều kiện sau:

 \[\left( C \right):\left\{ \begin{array}{l}I\left( {0;0} \right)\\R = 1\end{array} \right.\] suy ra chỉ có phương trình x2 + y2 = 1 thoả mãn yêu cầu.


Câu 7:

Đường tròn có tâm I (1; 2), bán kính R = 2 có phương trình là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Đường tròn có tâm I (1; 2), bán kính R = 2 có phương trình là:

(x – 1)2 + (y – 2)2 = 4

x2 + y2 – 2x – 4y + 1 = 0


Câu 8:

Đường tròn (C) đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Gọi phương trình đường tròn cần tím có dạng (C): x2 + y2 + 2ax + 2by + c = 0.

Vì (C) đi qua các điểm A, B, C nên lần lượt thay tọa độ các điểm vào phương trình (C) ta được hệ phương trình:

\(\left\{ \begin{array}{l}{\left( { - 1} \right)^2} + {\left( { - 2} \right)^2} + 2.a\left( { - 1} \right) + 2b\left( { - 2} \right) + c = 0\\{0^2} + {1^2} + 2.a.0 + 2b.1 + c = 0\\{1^2} + {2^2} + 2.a.1 + 2b.2 + c = 0\end{array} \right.\)

\(\left\{ \begin{array}{l} - 2a - 4b + c = - 5\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2b + c = - 1\\2a + 4b + c = - 5\end{array} \right.\)\(\left\{ \begin{array}{l}a = - 4\\b = 2\\c = - 5\end{array} \right.\)

Vậy phương trình đường tròn (C) là x2 + y2 – 8x + 4y – 5 = 0 (x – 4)2 + (y + 2)2 = 52.


Câu 9:

Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có: Bán kính của đường tròn:

R = IM = \[\sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {52} \]

Vậy phương trình đường tròn \[\left( C \right):\left\{ \begin{array}{l}I\left( { - 2;3} \right)\\R = \sqrt {52} \end{array} \right.\]là: (x + 2)2 + (y – 3)2 = 52

hay x2 + y2 + 4x – 6y – 39 = 0.


Câu 10:

Đường tròn đường kính AB với A (3; – 1), B (1; – 5) có phương trình là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có: Bán kính của đường tròn là:

R = \[\frac{1}{2}AB\] = \[\frac{1}{2}\sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 5 + 1} \right)}^2}} \]= \[\sqrt 5 \]

Khi đó phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {2; - 3} \right)\\R = \sqrt 5 \end{array} \right.\] là:

(C): (x – 2)2 + (y + 3)2 = 5.


Câu 11:

Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 9 tại điểm M (2; 1) là:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Đường tròn (C) có tâm I (2; 2) nên tiếp tuyến tại M có VTPT là \[\vec n = \overrightarrow {IM} = \left( {4;3} \right)\] nên có phương trình là: 4.(x 2) + 3. (y 1) = 0\[ \Leftrightarrow \] 4x + 3y 11 = 0.


Câu 12:

Cho đường tròn (C): (x – 1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) biết đường d song song với đường thẳng d’: x + y + 3 = 0.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Đường tròn (C) có tâm I (1; 2) và bán kính R = \(\sqrt 2 \).

Phương trình đường thẳng d // d’ nên có dạng x + y + m = 0 (m 3).

Vì d là tiếp tuyến của đường tròn (C) nên khoảng cách từ tâm I đến đường thẳng d bằng bán kính của đường tròn. Do đó ta có:

d(I; (C)) = \(\frac{{\left| {1 - 2 + m} \right|}}{{\sqrt 2 }} = \sqrt 2 \)

|m – 1| = 2

⇔ m – 1 = 2 hoặc m – 1 = – 2

⇔ m = 3 (không thỏa mãn) hoặc m = – 1 (thỏa mãn).

Vậy phương trình tiếp tuyến cần tìm là x + y – 1 = 0.


Câu 13:

Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; 1) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Xét phương trình (C): x2 + y2 – 3x – y = 0 \({\left( {x - \frac{3}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{2}\).

Khi đó đường tròn (C) có tâm \[I\left( {\frac{3}{2};\frac{1}{2}} \right)\] nên tiếp tuyến tại N có VTPT là:

\[\vec n = \overrightarrow {IN} = \left( { - \frac{1}{2}; - \frac{3}{2}} \right) = - \frac{1}{2}\left( {1;3} \right),\]

Nên có phương trình là: 1(x – 1) +3(y + 1) = 0\[ \Leftrightarrow \]x + 3y + 2 = 0.


Câu 14:

Viết phương trình tiếp tuyến của đường tròn (C): (x – 3)2 + (y + 1)2 = 5, biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) có tâm I(3; 1), R = \[\sqrt 5 \] và tiếp tuyến có dạng \[\Delta \]: 2x + y + c = 0 (c ≠ 7)

Ta có:

Bán kính của đường tròn \[R = d\left( {I;\Delta } \right) \Leftrightarrow \]\[\frac{{\left| {c + 5} \right|}}{{\sqrt 5 }} = \sqrt 5 \]

\[ \Leftrightarrow \]\[\left| {c + 5} \right| = 5\]\[ \Leftrightarrow \]\[\left[ \begin{array}{l}c + 5 = 5\\c + 5 = - 5\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}c = 0\\c = - 10\end{array} \right.\]

suy ra:\[\Delta \]:2x + y = 0 hoặc \[\Delta \]:2x + y – 10 = 0.


Câu 15:

Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến vuông góc đường thẳng d: 3x 4y 2018 = 0.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Xét phương trình đường thẳng d có VTPT là \(\overrightarrow {{n_d}} = \)(3; – 4) suy ra VTCP của đường thẳng d là \(\overrightarrow {{u_d}} = \)(4; 3).

Vì phương trình tiếp tuyến vuông góc với đường thẳng d nên nhận \(\overrightarrow {{u_d}} = \)(4; 3) làm VTPT khi đó phương trình tiếp tuyến có dạng: 4x + 3y + c = 0

Ta có: Đường tròn (C) có tâm I(– 2; – 2), R = 5

Bán kính đường tròn: \[R = d\left( {I;\Delta } \right)\] \[ \Leftrightarrow \frac{{\left| {4.( - 2) + 3.( - 2) + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Leftrightarrow \frac{{\left| {c - 14} \right|}}{5} = 5\]

|c – 14| = 25\[ \Leftrightarrow \left[ \begin{array}{l}c - 14 = 25\\c - 14 = - 25\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}c = 39\\c = - 11\end{array} \right.\]

Suy ra có hai phương trình tiếp tuyến thỏa mãn: 4x + 3y + 39 = 0 hoặc \[\Delta \]: 4x + 3y –11 = 0.


Bắt đầu thi ngay