Trắc nghiệm Toán 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp có đáp án
-
556 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Đáp án đúng là: A
Ta chọn 3 phần tử bất kỳ trong 7 phần tử ta sẽ được một tập con có 3 phần tử của tập có 7 phần tử. Vậy mỗi cách chọn như vậy là là một tổ hợp chập 3 của 7 phần tử.
Số tập con là \[C_7^3\]
Câu 2:
Có bao nhiêu cách xếp 8 người vào một bàn tròn
Đáp án đúng là: B
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! Cách xếp
Vậy có 1.7! = 5040 cách xếp
Câu 3:
Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
Đáp án đúng là: D
Chọn An có 1 cách chọn.
Chọn 3 bạn trong 11 bạn còn lại có \(C_{11}^3 = 165\) cách chọn.
Vậy có 1.165 = 165 cách chọn.
Câu 4:
Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
Đáp án đúng là: C
Ta lập nhóm có 2 học sinh: ta chọn bất kỳ 2 học sinh trong 10 học sinh có \(C_{10}^2\) cách
Ta lập nhóm có 3 học sinh: vì chọn 2 học sinh để lập nhóm đầu tiên nên còn lại 8 học sinh, ta chọn 3 học sinh bất kì trong 8 học sinh có \(C_8^3\) cách
Ta lập nhóm có 5 học sinh: vì đã lập nhóm có 2 và 3 học sinh nên còn lại 5 học sinh, ta chọn 5 học sinh để lập thành nhóm có \(C_5^5\) cách
Vậy có \(C_{10}^2\).\(C_8^3\).\(C_5^5\) cách
Câu 5:
Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau
Đáp án đúng là: B
Giả sử ta có 2 điểm A, B phân biệt thì có hai vectơ là vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {BA} \)
Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được hai vectơ nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Hay số vectơ được tạo thành từ 10 điểm phân biệt là chỉnh hợp chập 2 của 10. Vậy số vectơ được tạo thành từ 10 điểm phân biệt khác nhau là 2.\(C_{10}^2\) = \(A_{10}^2\) = 90 (vectơ).
Câu 6:
Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Đáp án đúng là: A
Mỗi cách chọn ra 2 học sinh từ một tổ có 10 học sinh và phân công giữ chức vụ tổ trưởng, tổ phó là một chỉnh hợp chập 2 của 10 phần tử. Số cách chọn là \[A_{10}^2\] = 90 cách.
Câu 7:
Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để nam, nữ ngồi xen kẽ
Đáp án đúng là: B
Vì có 2 học sinh nam và 3 học sinh nữ ngồi xen kẽ nên học sinh nữ phải ngồi vị trí đầu tiên. Xếp 3 học sinh nữ có 3! Cách, xếp 2 học sinh nam có 2! Cách.
Vậy có 3!.2! = 12 cách
Câu 8:
Đáp án đúng là: B
Điều kiện: x \( \in \) ℕ, x ≥ 2.
Ta có:\[A_x^2 = 90 \Leftrightarrow \frac{{x!}}{{\left( {x - 2} \right)!}} = 90 \Leftrightarrow x(x - 1) = 90 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = - 9\end{array} \right.\].
So sánh điều kiện ta nhận x = 10 thoả mãn
Vậy x thoả mãn điều kiện 2x + 3 > 20
Câu 9:
Cho đa giác đều có n cạnh n ≥ 4. Giá trị của n để đa giác có số đường chéo bằng số cạnh thuộc khoảng nào trong các khoảng sau
Đáp án đúng là: A
Tổng số đường chéo và cạnh của đa giác là : \(C_n^2\)
\( \Rightarrow \) Số đường chéo của đa giác là \(C_n^2 - n\).
Ta có: Số đường chéo bằng số cạnh
\( \Leftrightarrow C_n^2 - n = n\)\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 2n\)\( \Leftrightarrow \) n(n – 1) = 4n \( \Leftrightarrow \) n – 1 = 4 \( \Leftrightarrow \)n = 5
Vậy n thuộc khoảng (4; 7)
Câu 10:
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện \(C_m^2 = 153\) và \(C_m^n = C_m^{n + 2}\). Khi đó m + n bằng
Đáp án đúng là: C
Điều kiện: m ≥ n + 2; m, n \( \in \) ℕ
Theo tính chất \(C_m^n = C_m^{m - n}\) nên từ \(C_m^n = C_m^{n + 2}\) suy ra 2n + 2 = m
\(C_m^2 = 153\)\( \Leftrightarrow \frac{{m!}}{{2!(m - 2)!}} = 153\) \( \Leftrightarrow \frac{{m\left( {m - 1} \right)}}{2} = 153\)
\( \Leftrightarrow {m^2} - m - 306 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 18\\m = - 17\end{array} \right.\)
Kết hợp với điều kiện m = 18 ⇒ n = 8
Vậy m + n = 18 + 8 = 26.
Câu 11:
Tính giá trị \[M = A_{n - 15}^2 + 3A_{n - 14}^3\], biết rằng \[C_n^4 = 20C_n^2\]
Đáp án đúng là: A
Điều kiện n ≥ 17; n \( \in \) ℕ, ta có \[C_n^4 = 20C_n^2\]\[ \Leftrightarrow \frac{{n!}}{{4!\left( {n - 4} \right)!}} = 20\frac{{n!}}{{2!\left( {n - 2} \right)!}}\]
\( \Leftrightarrow \) (n – 2)(n – 3) = 240\[ \Rightarrow \left[ \begin{array}{l}n = 18\\n = - 13\end{array} \right.\]
Kết hợp với điều kiện n = 18 thoả mãn. Vậy \[M = A_3^2 + 3A_4^3\] = 78.
Câu 12:
Cho số tự nhiên n thỏa mãn \(3C_{n + 1}^3 - 3A_n^2 = 42\left( {n - 1} \right)\). Giá trị của biểu thức \(3C_n^4 - A_n^2\) là
Đáp án đúng là: A
Điều kiện n \( \in \)ℕ, n ≥ 2.
Ta có \(3C_{n + 1}^3 - 3A_n^2 = 42\left( {n - 1} \right)\)\( \Leftrightarrow 3\frac{{\left( {n + 1} \right)!}}{{3!\left( {n - 2} \right)!}} - 3\frac{{n!}}{{\left( {n - 2} \right)!}} = 42\left( {n - 1} \right)\)
\( \Leftrightarrow 3\frac{{(n + 1)n(n - 1)(n - 2)...1}}{{3.2.1.(n - 2)...1}} - 3\frac{{n(n - 1)(n - 2)...1}}{{(n - 2)(n - 3)...1}} = 42(n - 1)\)
\( \Leftrightarrow \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)}}{2} - 3n\left( {n - 1} \right) = 42\left( {n - 1} \right)\)
\( \Leftrightarrow \) (n + 1)n – 6n = 84
\( \Leftrightarrow \) n2 – 5n – 84 = 0
\( \Leftrightarrow \left[ \begin{array}{l}n = 12\\n = - 7\end{array} \right.\)
Kết hợp điều kiện ta có n = 12 thoả mãn điều kiện đầu bài.
Giá trị của biểu thức \(3C_n^4 - A_n^2\) = \(3C_{12}^4 - A_{12}^2\) =1353.
Câu 13:
Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
Đáp án đúng là: C
Theo đề bài: Vì trong tập A không có 3 điểm nào thẳng hàng nên lấy bất kỳ 3 điểm của tập A sẽ tạo thành một tam giác và lấy 2 điểm bất kì của tập A sẽ tạo thành một đoạn thẳng. Số tam giác lập được là \(C_n^3\), số đoạn thẳng có thể tạo thành là \(C_n^2\). Theo bài ra ta có \(C_n^3 = 2C_n^2\) (1) (với n \( \in \)ℕ, n ≥ 3)
\[ \Leftrightarrow \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 2\frac{{n!}}{{2!\left( {n - 2} \right)!}} \Leftrightarrow \frac{1}{6} = \frac{1}{{n - 2}} \Leftrightarrow n = 8\]
Câu 14:
Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II?
Đáp án đúng là: A
Lấy ra 5 bóng đèn bất kỳ thoả mãn bóng đèn loại I nhiều hơn bóng đèn loại II nên ta có các trường hợp sau:
Trường hợp 1: Lấy được 5 bóng đèn loại I: có \(C_5^5\) = 1 cách
Trường hợp 2: Lấy được 4 bóng đèn loại I, 1 bóng đèn loại II: có \(C_5^4.C_7^1\) = 35 cách
Trường hợp 3: Lấy được 3 bóng đèn loại I, 1 bóng đèn loại II: có \(C_5^3.C_7^2\) = 210 cách
Theo quy tắc cộng, có 1 + 35 + 210 = 246 cách
Câu 15:
Tính giá trị của biểu thức P = \(3C_n^3 + 2A_n^4 - 2n\). Biết giá trị của n thoả mãn \[A_n^2 - C_{n + 1}^{n - 1} = 4n + 6\] (n \( \in \)ℕ, n ≥ 2).
Đáp án đúng là: A
Ta có \[A_n^2 - C_{n + 1}^{n - 1} = 4n + 6\]
\[ \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - \frac{{\left( {n + 1} \right)!}}{{2!\left( {n - 1} \right)!}} = 4n + 6\,\]
\( \Leftrightarrow \) 2(n – 1)n – n(n + 1) = 8n + 12
\( \Leftrightarrow \) n2 – 11n – 12 = 0 \( \Leftrightarrow \left[ \begin{array}{l}n = 12\\n = - 1\end{array} \right.\)
Kết hợp với điều kiện n = 12 thoả mãn điều kiện đề bài.
Vậy P = \(3C_n^3 + 2A_n^4 - 2n\) = \(3C_{12}^3 + 2A_{12}^4 - 2.12\) = 24396.