Thứ sáu, 22/11/2024
IMG-LOGO
Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp có đáp án

Trắc nghiệm Toán 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp có đáp án

Trắc nghiệm Toán 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp có đáp án

  • 520 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

Xem đáp án

Đáp án đúng là: A

Ta chọn 3 phần tử bất kỳ trong 7 phần tử ta sẽ được một tập con có 3 phần tử của tập có 7 phần tử. Vậy mỗi cách chọn như vậy là là một tổ hợp chập 3 của 7 phần tử.

Số tập con là \[C_7^3\]


Câu 2:

Có bao nhiêu cách xếp 8 người vào một bàn tròn

Xem đáp án

Đáp án đúng là: B

Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! Cách xếp

Vậy có 1.7! = 5040 cách xếp


Câu 3:

Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:

Xem đáp án

Đáp án đúng là: D

Chọn An có 1 cách chọn.

Chọn 3 bạn trong 11 bạn còn lại có \(C_{11}^3 = 165\) cách chọn.

Vậy có 1.165 = 165 cách chọn.


Câu 4:

Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

Xem đáp án

Đáp án đúng là: C

Ta lập nhóm có 2 học sinh: ta chọn bất kỳ 2 học sinh trong 10 học sinh có \(C_{10}^2\) cách

Ta lập nhóm có 3 học sinh: vì chọn 2 học sinh để lập nhóm đầu tiên nên còn lại 8 học sinh, ta chọn 3 học sinh bất kì trong 8 học sinh có \(C_8^3\) cách

Ta lập nhóm có 5 học sinh: vì đã lập nhóm có 2 và 3 học sinh nên còn lại 5 học sinh, ta chọn 5 học sinh để lập thành nhóm có \(C_5^5\) cách

Vậy có \(C_{10}^2\).\(C_8^3\).\(C_5^5\) cách


Câu 5:

Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau

Xem đáp án

Đáp án đúng là: B

Giả sử ta có 2 điểm A, B phân biệt thì có hai vectơ là vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {BA} \)

Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được hai vectơ nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Hay số vectơ được tạo thành từ 10 điểm phân biệt là chỉnh hợp chập 2 của 10. Vậy số vectơ được tạo thành từ 10 điểm phân biệt khác nhau là 2.\(C_{10}^2\) = \(A_{10}^2\) = 90 (vectơ).


Câu 6:

Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

Xem đáp án

Đáp án đúng là: A

Mỗi cách chọn ra 2 học sinh từ một tổ có 10 học sinh và phân công giữ chức vụ tổ trưởng, tổ phó là một chỉnh hợp chập 2 của 10 phần tử. Số cách chọn là \[A_{10}^2\] = 90 cách.


Câu 7:

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để nam, nữ ngồi xen kẽ

Xem đáp án

Đáp án đúng là: B

Vì có 2 học sinh nam và 3 học sinh nữ ngồi xen kẽ nên học sinh nữ phải ngồi vị trí đầu tiên. Xếp 3 học sinh nữ có 3! Cách, xếp 2 học sinh nam có 2! Cách.

Vậy có 3!.2! = 12 cách


Câu 8:

Nếu \(A_x^2 = 90\) thì x thoả mãn điều kiện nào sau đây
Xem đáp án

Đáp án đúng là: B

Điều kiện: x \( \in \) ℕ, x ≥ 2.

Ta có:\[A_x^2 = 90 \Leftrightarrow \frac{{x!}}{{\left( {x - 2} \right)!}} = 90 \Leftrightarrow x(x - 1) = 90 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = - 9\end{array} \right.\].

So sánh điều kiện ta nhận x = 10 thoả mãn

Vậy x thoả mãn điều kiện 2x + 3 > 20


Câu 9:

Cho đa giác đều có n cạnh n ≥ 4. Giá trị của n để đa giác có số đường chéo bằng số cạnh thuộc khoảng nào trong các khoảng sau

Xem đáp án

Đáp án đúng là: A

Tổng số đường chéo và cạnh của đa giác là : \(C_n^2\)

\( \Rightarrow \) Số đường chéo của đa giác là \(C_n^2 - n\).

Ta có: Số đường chéo bằng số cạnh

\( \Leftrightarrow C_n^2 - n = n\)\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 2n\)\( \Leftrightarrow \) n(n – 1) = 4n \( \Leftrightarrow \) n – 1 = 4 \( \Leftrightarrow \)n = 5

Vậy n thuộc khoảng (4; 7)


Câu 10:

Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện \(C_m^2 = 153\)\(C_m^n = C_m^{n + 2}\). Khi đó m + n bằng

Xem đáp án

Đáp án đúng là: C

Điều kiện: m ≥ n + 2; m, n \( \in \)

Theo tính chất \(C_m^n = C_m^{m - n}\) nên từ \(C_m^n = C_m^{n + 2}\) suy ra 2n + 2 = m

\(C_m^2 = 153\)\( \Leftrightarrow \frac{{m!}}{{2!(m - 2)!}} = 153\) \( \Leftrightarrow \frac{{m\left( {m - 1} \right)}}{2} = 153\)

\( \Leftrightarrow {m^2} - m - 306 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 18\\m = - 17\end{array} \right.\)

Kết hợp với điều kiện m = 18 n = 8

Vậy m + n = 18 + 8 = 26.


Câu 11:

Tính giá trị \[M = A_{n - 15}^2 + 3A_{n - 14}^3\], biết rằng \[C_n^4 = 20C_n^2\]

Xem đáp án

Đáp án đúng là: A

Điều kiện n ≥ 17; n \( \in \) , ta có \[C_n^4 = 20C_n^2\]\[ \Leftrightarrow \frac{{n!}}{{4!\left( {n - 4} \right)!}} = 20\frac{{n!}}{{2!\left( {n - 2} \right)!}}\]

\( \Leftrightarrow \) (n – 2)(n – 3) = 240\[ \Rightarrow \left[ \begin{array}{l}n = 18\\n = - 13\end{array} \right.\]

Kết hợp với điều kiện n = 18 thoả mãn. Vậy \[M = A_3^2 + 3A_4^3\] = 78.


Câu 12:

Cho số tự nhiên n thỏa mãn \(3C_{n + 1}^3 - 3A_n^2 = 42\left( {n - 1} \right)\). Giá trị của biểu thức \(3C_n^4 - A_n^2\)

Xem đáp án

Đáp án đúng là: A

Điều kiện n \( \in \)ℕ, n ≥ 2.

Ta có \(3C_{n + 1}^3 - 3A_n^2 = 42\left( {n - 1} \right)\)\( \Leftrightarrow 3\frac{{\left( {n + 1} \right)!}}{{3!\left( {n - 2} \right)!}} - 3\frac{{n!}}{{\left( {n - 2} \right)!}} = 42\left( {n - 1} \right)\)

\( \Leftrightarrow 3\frac{{(n + 1)n(n - 1)(n - 2)...1}}{{3.2.1.(n - 2)...1}} - 3\frac{{n(n - 1)(n - 2)...1}}{{(n - 2)(n - 3)...1}} = 42(n - 1)\)

\( \Leftrightarrow \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)}}{2} - 3n\left( {n - 1} \right) = 42\left( {n - 1} \right)\)

\( \Leftrightarrow \) (n + 1)n – 6n = 84

\( \Leftrightarrow \) n2 – 5n – 84 = 0

\( \Leftrightarrow \left[ \begin{array}{l}n = 12\\n = - 7\end{array} \right.\)

Kết hợp điều kiện ta có n = 12 thoả mãn điều kiện đầu bài.

Giá trị của biểu thức \(3C_n^4 - A_n^2\) = \(3C_{12}^4 - A_{12}^2\) =1353.


Câu 13:

Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

Xem đáp án

Đáp án đúng là: C

Theo đề bài: Vì trong tập A không có 3 điểm nào thẳng hàng nên lấy bất kỳ 3 điểm của tập A sẽ tạo thành một tam giác và lấy 2 điểm bất kì của tập A sẽ tạo thành một đoạn thẳng. Số tam giác lập được là \(C_n^3\), số đoạn thẳng có thể tạo thành là \(C_n^2\). Theo bài ra ta có \(C_n^3 = 2C_n^2\) (1) (với n \( \in \)ℕ, n ≥ 3)

\[ \Leftrightarrow \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 2\frac{{n!}}{{2!\left( {n - 2} \right)!}} \Leftrightarrow \frac{1}{6} = \frac{1}{{n - 2}} \Leftrightarrow n = 8\]


Câu 14:

Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II?

Xem đáp án

Đáp án đúng là: A

Lấy ra 5 bóng đèn bất kỳ thoả mãn bóng đèn loại I nhiều hơn bóng đèn loại II nên ta có các trường hợp sau:

Trường hợp 1: Lấy được 5 bóng đèn loại I: có \(C_5^5\) = 1 cách

Trường hợp 2: Lấy được 4 bóng đèn loại I, 1 bóng đèn loại II: có \(C_5^4.C_7^1\) = 35 cách

 Trường hợp 3: Lấy được 3 bóng đèn loại I, 1 bóng đèn loại II: có \(C_5^3.C_7^2\) = 210 cách

Theo quy tắc cộng, có 1 + 35 + 210 = 246 cách


Câu 15:

Tính giá trị của biểu thức P = \(3C_n^3 + 2A_n^4 - 2n\). Biết giá trị của n thoả mãn \[A_n^2 - C_{n + 1}^{n - 1} = 4n + 6\] (n \( \in \)ℕ, n ≥ 2).

Xem đáp án

Đáp án đúng là: A

Ta có \[A_n^2 - C_{n + 1}^{n - 1} = 4n + 6\]

\[ \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - \frac{{\left( {n + 1} \right)!}}{{2!\left( {n - 1} \right)!}} = 4n + 6\,\]

\( \Leftrightarrow \) 2(n – 1)n – n(n + 1) = 8n + 12

\( \Leftrightarrow \) n2 – 11n – 12 = 0 \( \Leftrightarrow \left[ \begin{array}{l}n = 12\\n = - 1\end{array} \right.\)

Kết hợp với điều kiện n = 12 thoả mãn điều kiện đề bài.

Vậy P = \(3C_n^3 + 2A_n^4 - 2n\) = \(3C_{12}^3 + 2A_{12}^4 - 2.12\) = 24396.


Bắt đầu thi ngay