Bài 4: Hệ trục tọa độ
-
2399 lượt thi
-
12 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Hãy tìm cách xác định vị trí quân xe và quân mã trên bàn cờ vua (h.1.21).
Vị trí của quân xe: hàng 3, cột c
Vị trí của quân mã: hàng 5, cột f
Câu 2:
Hãy phân tích các vectơ a→, b→ theo hai vectơ i→ và j→ trong hình (h.1.23)
a→ = 4i→ + 2j→
b→ = 0i→ - 4j
Câu 3:
Tìm tọa độ của các điểm A, B, C trong hình 1.26. Cho ba điểm D(-2; 3), E(0; -4), F(3; 0). Hãy vẽ các điểm D, E, F trên mặt phẳng Oxy.
A(4; 2)
B(3; 0)
C(0; 2)
Câu 4:
Gọi G là trọng tâm của tam giác ABC. Hãy phân tích vectơ OG→ theo ba vectơ OA→, OB→, OC→. Từ đó hãy tính tọa độ điểm G theo tọa độ của A, B và C.
Do G là trọng tâm tam giác ABC nên
hay
Câu 5:
Trên trục (O, e→) cho các điểm A, B, M, N có tọa độ lần lượt là -1, 2, 3, -2
a) Hãy vẽ trục và biểu diễn các điểm đã cho trên trục;
b) Tính độ dài đại số của . Từ đó suy ra hai vectơ ngược hướng.
a) Vẽ trục và biểu diễn các điểm
b) Ta có:
A có tọa độ là –1, B có tọa độ là 2 nên
M có tọa độ là 3, N có tọa độ là –2 nên
Câu 6:
Trong mặt phẳng tọa độ, các mệnh đề sau đúng hay sai?
a) a→ (-3; 0) và i→ (1; 0) là hai vec tơ ngược hướng.
b) a→ (3; 4) và b→ (-3; -4) là hai vec tơ đối nhau
c) a→ (5; 3) và b→ (3; 5) là hai vec tơ đối nhau.
d) Hai vec tơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
a) Đúng
Giải thích: Nhận thấy a→ = -3.i→
Vì –3 < 0 nên a→ và i→ ngược hướng.
b) Đúng.
Giải thích:
⇒ a→ = -b→ nên a→ và b→ là hai vec tơ đối nhau.
c) Sai
Giải thích:
⇒ a→ ≠ -b→ nên a→ và b→ không phải là hai vec tơ đối nhau.
d) Đúng
Nhận xét SGK : Hai vectơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
Câu 8:
Trong mặt phẳng Oxy. Các khẳng định sau đúng hay sai?
a) Tọa độ của điểm A bằng tọa độ của vectơ OA;
b) Điểm A nằm trên trục hoành thì có tung độ bằng 0;
c) Điểm A nằm trên trục tung thì có hoành độ bằng 0;
d) Hoành độ và tung độ của điểm A bằng nhau khi và chỉ khi A nằm trên tia phân giác của góc phần tư thứ nhất.
a) Đúng. Giả sử A(a; b); O(0; 0)
b) Đúng
c) Đúng
d) Đúng Vì tia phân giác của góc phần tư thứ nhất là đường thẳng y = x.
Câu 9:
Trong mặt phẳng tọa độ Oxy cho điểm M(xo, yo).
a) Tìm tọa độ của điểm A đối xứng với M qua trục Ox;
b) Tìm tọa độ của điểm B đối xứng với M qua trục Oy;
c) Tìm tọa độ của điểm C đối xứng với M gốc O.
Biểu diễn các điểm trên hệ trục tọa độ ta thấy:
a) Điểm đối xứng với M(x0; y0) qua trục Ox là A(x0 ; –y0)
b) Điểm đối xứng với M(x0 ; y0) qua trục Oy là B(–x0 ; y0)
c) Điểm đối xứng với M(x0 ; y0) qua gốc O là C(–x0 ; –y0).
Câu 11:
Các điểm A'(-4; 1), B'(2; 4), C'(2; -2) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC. Tính tọa độ các đỉnh của tam giác ABC. Chứng minh rằng trọng tâm của tam giác ABC và A'B'C' trùng nhau.
A’ là trung điểm của BC
B’ là trung điểm của AC
C’ là trung điểm của BA
Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’
Ta có :
Vậy G ≡ G’ (đpcm)