IMG-LOGO
Trang chủ Lớp 10 Toán Giải SGK Toán 10 Chương 3: Phương trình. Hệ phương trình

Giải SGK Toán 10 Chương 3: Phương trình. Hệ phương trình

Bài 2: Phương trình quy về phương trình bậc nhất, bậc hai

  • 1070 lượt thi

  • 8 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 2:

Giải và biện luận các phương trình sau theo tham số m:

a) m(x - 2) = 3x + 1 ;

b) m2 x+ 6 = 4x + 3m ;

c) (2m + 1)x - 2m = 3x - 2;

Xem đáp án

a) m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

     + Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.

Kết luận:

+ với m = 3, phương trình vô nghiệm

+ với m ≠ 3, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

b)  m2 x+ 6 = 4x + 3m

⇔  m2 x– 4x = 3m – 6

⇔ ( m2 – 4).x = 3m – 6 (2)

+ Xét  m2 – 4 ≠ 0 ⇔ m ≠ ±2, phương trình (2) có nghiệm duy nhất:

Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

+ Xét  m2 – 4 = 0 ⇔ m = ±2

     ● Với m = 2, pt (2) ⇔ 0x = 0 , phương trình có vô số nghiệm

     ● Với m = –2, pt (2) ⇔ 0x = –12, phương trình vô nghiệm.

Kết luận:

     + m = 2, phương trình có vô số nghiệm

     + m = –2, phương trình vô nghiệm

     + m ≠ ±2, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

c) (2m + 1)x – 2m = 3x – 2

⇔ (2m + 1)x – 3x = 2m – 2

⇔ (2m + 1 – 3).x = 2m – 2

⇔ (2m – 2).x = 2m – 2 (3)

     + Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.

Kết luận :

+ Với m = 1, phương trình có vô số nghiệm

+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.


Câu 3:

Có hai rổ quýt chứa số quýt bằng nhau. Nếu lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng 1/3 của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu?

Xem đáp án

Gọi số quýt ban đầu ở mỗi rổ là x (quả)

Muốn lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở mỗi rổ lúc đầu phải nhiều hơn 30 quả hay x > 30.

Khi đó rổ thứ nhất còn x – 30 quả; rổ thứ hai có x + 30 quả.

Vì số quả ở rổ thứ hai bằng 1/3 bình phương số quả còn lại ở rổ thứ nhất nên ta có phương trình:

Giải bài 3 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Giải phương trình (1):

Giải bài 3 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Vì x > 30 nên x = 45 thỏa mãn.

Vậy ban đầu mỗi rổ có 45 quả cam.


Câu 4:

Giải các phương trình

a) 2x4-7x2+5=0;        b) 3x4+2x2-1=0

Xem đáp án

a) 2x4-7x2 + 5 = 0 (1)

Tập xác định: D = R.

Đặt t = x2, điều kiện t ≥ 0.

Khi đó phương trình (1) trở thành:

2t2 – 7t + 5 = 0

⇔ (2t – 5) (t – 1) = 0

 

Giải bài 4 trang 62 sgk Đại số 10 | Để học tốt Toán 10

b) 3x4+2x2 – 1 = 0 (2)

Tập xác định : D = R.

Đặt t = x2, điều kiện t ≥ 0

Khi đó phương trình (2) trở thành :

3t2 + 2t – 1 = 0 ⇔ (3t – 1)(t + 1) = 0

Giải bài 4 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Giải bài 4 trang 62 sgk Đại số 10 | Để học tốt Toán 10

 

Câu 5:

Giải các phương trình sau bằng máy tính bỏ túi (làm tròn kết quả đến chữ số thập phân thứ ba)

a) 2x2- 5x - 4 = 0 ;         b) -3x2 + 4x + 2 = 0

c) 3x2 + 7x + 4 = 0 ;         d) 9x2 - 6x - 4 = 0.

Xem đáp án

Hướng dẫn cách giải câu a): Nếu sử dụng máy tính CASIO fx-500 MS, ta ấn liên tiếp các phím

Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

màn hình hiện ra x1 = 3.137458609

Ấn tiếp Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10 màn hình hiện ra x2 = –0.637458608

Làm tròn kết quả đến chữ số thập phân thứ ba ta được nghiệm gần đúng của phương trình là x1 ≈ 3.137 và x2 ≈ –0.637.

Lời giải: Sử dụng máy tính CASIO fx–500 MS

  Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

 

* Nếu sử dụng các loại máy tính CASIO fx – 570, để vào chương trình giải phương trình bậc 2 các bạn ấn như sau:

Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

rồi sau đó nhập các hệ số và đưa ra kết quả như CASIO fx–500 MS trên.

* Nếu sử dụng các loại máy tính VINACAL, để vào chương trình giải phương trình bậc 2 các bạn ấn như sau:

Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

rồi sau đó nhập các hệ số và đưa ra kết quả như trên.

* Các loại máy tính CASIO fx–570, VINACAL trên khi giải phương trình vô tỷ sẽ cho nghiệm chính xác dưới dạng căn thức, để nghiệm hiển thị dưới dạng số thập phân, các bạn ấn nút Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Ví dụ để giải phương trình trên máy tính CASIO fx–570 VN, các bạn ấn như sau:

Giải bài 5 trang 62 sgk Đại số 10 | Để học tốt Toán 10

 

Câu 6:

Giải các phương trình

a) |3x - 2| = 2x + 3 ;

b) |2x - 1| = |-5x - 2| ;

c) x-12x-3=-3x+1x+1

d) |2x + 5| = x2 + 5x + 1.

Xem đáp án

a) |3x – 2| = 2x + 3 (1)

Tập xác định: D = R.

+ Nếu Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 thì phương trình (1) trở thành 3x – 2 = 2x + 3. Từ đó x = 5.

Giá trị x = 5 thỏa mãn điều kiện nên x = 5 là một nghiệm của phương trình (3).

+ Nếu Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 thì phương trình (1) trở thành 2 – 3x = 2x + 3. Từ đó Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Giá trị Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 là một nghiệm của phương trình (3).

Vậy phương trình có hai nghiệm x = 5 và Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

b) |2x - 1| = |-5x - 2| (2)

Tập xác định D = R.

Ta có:

Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Vậy phương trình có hai nghiệm Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 và x = –1.

 

Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

+ Xét x > –1, khi đó x + 1 > 0 nên |x + 1| = x + 1.

Khi đó pt (3)

Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

+ Xét x < –1, khi đó x + 1 < 0 nên |x + 1| = –x – 1.

Khi đó pt (3)

Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

(không thỏa mãn điều kiện x < –1).

Vậy phương trình có hai nghiệm là Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10

d) |2x + 5| =  x2 + 5x + 1 (4)

Tập xác định: D = R.

+ Xét 2x + 5 ≥ 0 ⇔ Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 , khi đó |2x + 5| = 2x + 5

Khi đó pt (4) ⇔ 2x + 5 =x2 + 5x + 1

x2 + 3x – 4 = 0

⇔ (x + 4)(x – 1) = 0

⇔ x = –4 (không thỏa mãn) hoặc x = 1 (thỏa mãn)

+ Xét 2x + 5 < 0 ⇔ Giải bài 6 trang 62 sgk Đại số 10 | Để học tốt Toán 10 , khi đó |2x + 5| = –2x – 5.

Khi đó pt (4) ⇔ –2x – 5 = x2 + 5x + 1

x2 + 7x + 6 = 0

⇔ (x + 1)(x + 6) = 0

⇔ x = –1 (không thỏa mãn) hoặc x = –6 (thỏa mãn).

Vậy phương trình có hai nghiệm x = 1 hoặc x = –6.


Câu 7:

Giải các phương trình

a,5x+6+x-6;b,3-x=x+2+1;c,2x2+5=x+2;d,4x2+2x+10=3x+1

Xem đáp án

a) Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10 (1)

Điều kiện xác định: 5x + 6 ≥ 0 ⇔ x-65

Từ (1) ⇒ 5x + 6 = (x-6)2

⇔ 5x + 6 =x2 – 12x + 36

x2 – 17x + 30 = 0

⇔ (x – 15)(x – 2) = 0

⇔ x = 15 (thỏa mãn ĐKXĐ) hoặc x = 2 (thỏa mãn đkxđ).

Thử lại x = 15 là nghiệm của (1), x = 2 không phải nghiệm của (1)

Vậy phương trình có nghiệm x = 15.

b) Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10 (2)

Điều kiện xác định: -2 ≤ x ≤ 3

Ta có (2)

Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10

Thử lại thấy x = 2 không phải nghiệm của (2)

Vậy phương trình có nghiệm duy nhất x = –1

 

c) Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10 (3)

Tập xác định: D = R.

Từ pt (3)

2x2+5=(x+2)22x2+5=x2+4x+4x2-4x+1

Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10

Thử lại ta thấy cả hai giá trị trên đều là nghiệm của (3)

Vậy phương trình có nghiệm là x = 2 + √3; x = 2 - √3.

d) Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10 (4)

Ta có Giải bài 7 trang 63 sgk Đại số 10 | Để học tốt Toán 10 với mọi x.

Do đó phương trình có tập xác định D = R.

Từ (4) ⇒ 4x2+ 2x + 10 =  (3x+1)2

4x2 + 2x + 10 = 9x2 + 6x + 1

5x2 + 4x – 9 = 0

⇔ x = 1 hoặc x = –9/5

Thử lại thấy chỉ có x = 1 là nghiệm của (4)

Vậy phương trình có nghiệm duy nhất x = 1.


Câu 8:

Cho phương trình 3x2 - 2(m + 1)x + 3m - 5 = 0

Xác định m để phương trình có một nghiệm gấp ba nghiệm kia. Tính các nghiệm trong trường hợp đó.

Xem đáp án

 Ta có : 3x2 – 2(m + 1)x + 3m – 5 = 0 (1)

(1) có hai nghiệm phân biệt khi Δ’ > 0

(m+1)2 – 3.(3m – 5) > 0

m2 + 2m + 1 – 9m + 15 > 0

m2 – 7m + 16 > 0

(m-72)2 + 15/4 > 0

Điều này luôn đúng với mọi m ∈ R hay phương trình (1) luôn có hai nghiệm phân biệt., gọi hai nghiệm đó là x1; x2

Khi đó theo định lý Vi–et ta có Giải bài 8 trang 63 sgk Đại số 10 | Để học tốt Toán 10 (I)

 

Phương trình có một nghiệm gấp ba nghiệm kia, giả sử x2 = 3.x1, khi thay vào (I) suy ra :

Giải bài 8 trang 63 sgk Đại số 10 | Để học tốt Toán 10

* TH1 : m = 3, pt (1) trở thành 3x2 – 8m + 4 = 0 có hai nghiệm x1 = 2/3 và x2 = 2 thỏa mãn điều kiện.

* TH2 : m = 7, pt (1) trở thành 3x2 – 16m + 16 = 0 có hai nghiệm x1 = 4/3 và x2 = 4 thỏa mãn điều kiện.

Kết luận : m = 3 thì pt có hai nghiệm là 2/3 và 2.

m = 7 thì pt có hai nghiệm 4/3 và 4.


Bắt đầu thi ngay