IMG-LOGO
Trang chủ Lớp 8 Toán Giải SGK Toán 8 CTST Bài 6. Cộng, trừ phân thức có đáp án

Giải SGK Toán 8 CTST Bài 6. Cộng, trừ phân thức có đáp án

Giải SGK Toán 8 CTST Bài 6. Cộng, trừ phân thức có đáp án

  • 52 lượt thi

  • 27 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Tại một cuộc đua thuyền diễn ra trên một khúc sông từ A đến B dài 3 km. Mỗi đội thực hiện một vòng đua, xuất phát từ A đến B, rồi quay về A là đích. Một đội đua đạt tốc độ (x + 1) km/h khi xuôi dòng từ A đến B và đạt tốc độ (x – 1) km/h khi ngược dòng từ B về A.

Thời gian thi của đội là bao nhiêu? Chiều về mất thời gian nhiều hơn chiều đi bao nhiêu giờ? Cần dùng phép tính nào để tìm các đại lượng đó?

Tại một cuộc đua thuyền diễn ra trên một khúc sông từ A đến B dài 3 km. Mỗi đội thực hiện một vòng đua, xuất phát từ A đến B (ảnh 1)
Xem đáp án

Thời gian đội đua xuôi dòng từ A đến B là: 3x+1 (giờ).

Thời gian đội đua ngược dòng từ B về A là: 3x1 (giờ).

Thời gian thi của đội là: 3x+1+3x1 (giờ).

Chiều về mất thời gian nhiều hơn chiều đi là: 3x13x+1 (giờ).

Như vậy ta cần dùng phép tính cộng để tìm thời gian thi của đội và dùng phép tính trừ để tìm thời gian chiều về nhiều hơn chiều đi.


Câu 3:

b) Chiều rộng của B lớn hơn chiều rộng của A bao nhiêu? Biết b > a.

Xem đáp án

b) Chiều rộng của hình chữ nhật B lớn hơn chiều rộng của hình chữ nhật A là:

bxax (cm).


Câu 6:

Thực hiện các phép cộng, trừ phân thức sau:;

c) 2x2xy+yy2x.

Xem đáp án

c) 2x2xy+yy2x=2x2xy+y2xy

                               =2x2xy+y2xy

                               =2x+y2xy=2xy2xy=1.

Câu 7:

Cho hai phân thức A=a+bab B=aba2.

a) Tìm đa thức thích hợp thay vào mỗi ? sau đây:

a+bab=?a2b;                           aba2=?a2b.

Xem đáp án

a) Ta có: a+bab=a+b.aab.a=a2+aba2b. Do đó đa thức thay vào ? là: a2 + ab.

               aba2=ab.ba2.b=abb2a2b. Do đó đa thức thay vào ? là: ab – b2.


Câu 8:

b) Sử dụng kết quả trên, tính A + B và A – B.

Xem đáp án

b) A+B=a+bab+aba2

              =a2+aba2b+abb2a2b

              =a2+ab+abb2a2b

              =a2+2abb2a2b.

AB=a+bababa2

          =a2+aba2babb2a2b

          =a2+ababb2a2b

          =a2+abab+b2a2b

          =a2+b2a2b.


Câu 9:

Thực hiện các phép cộng, trừ phân thức sau:

a) aa33a+3;

Xem đáp án

a) aa33a+3

=aa+3a3a+33a3a3a+3

=a2+3a3a9a3a+3

=a2+3a3a+9a3a+3

=a2+9a3a+3;


Câu 11:

Thực hiện các phép cộng, trừ phân thức sau:;

c) 4x212x2+x.

Xem đáp án

c) 4x212x2+x

=4x+1x12xx+1

=4xxx+1x12x1xx+1x1

=4x2x2xx+1x1=4x2x+2xx+1x1

=2x+2xx+1x1

=2x+1xx+1x1

=2xx1


Câu 12:

Thực hiện phép tính xx+y+2xyx2y2yx+y
Xem đáp án

xx+y+2xyx2y2yx+y

=xx+yyx+y+2xyx2y2

=xyx+y+2xyx+yxy

=xy2x+yxy+2xyx+yxy

=x22xy+y2+2xyx+yxy

=x2+y2x+yxy


Câu 13:

Viết biểu thức tính tổng thời gian đi và về, chênh lệch thời gian giữa đi và về của đội đua thuyền ở tình huống trong Hoạt động khởi động (trang 31). Tính giá trị của các đại lượng này khi v = 6 km/h.

Xem đáp án

Thời gian đội đua xuôi dòng từ A đến B là: 3x+1 (giờ).

Thời gian đội đua ngược dòng từ B về A là: 3x1 (giờ).

Thời gian thi của đội là:

3x+1+3x1=3x1x+1x1+3x+1x+1x1

                    =3x3+3x+3x+1x1=6xx+1x1 (giờ).

Chiều về mất thời gian nhiều hơn chiều đi là:

3x13x+1=3x+1x+1x13x1x+1x1

=3x+33x3x+1x1=3x+33x+3x+1x1=6x+1x1(giờ).

Trong HĐKĐ không có v, có lẽ là x 😊 ® giải với x. (Tạm thời không nhập lời giải phía dưới).

Khi x = 6 km/h ta có:

• Thời gian thi của đội là: 6.66+161=367.5=3635 (giờ).

• Chiều về mất thời gian nhiều hơn chiều đi là: 66+161=67.5=635  (giờ).


Câu 15:

Thực hiện các phép cộng, trừ phân thức sau:

b) bab+aba;

Xem đáp án

b, bab+aba

=bab+aab=babaab=baab=abab=1


Câu 16:

Thực hiện các phép cộng, trừ phân thức sau:

c) a+b2abab2ab.
Xem đáp án

c, a+b2abab2ab

=a+b2ab2ab

=a+b+ab.a+babab

=2a.a+ba+bab

=2a.2bab=4


Câu 18:

Thực hiện các phép cộng, trừ phân thức sau:

b) x1x+1x+1x1;

Xem đáp án

b, x1x+1x+1x1

=x12x+1x1x+12x+1x1

=x22x+1x2+2x+1x+1x1

=x22x+1x22x1x+1x1

=4xx+1x1


Câu 19:

Thực hiện các phép cộng, trừ phân thức sau:

c) x+yxyy+zyz;

Xem đáp án

c, x+yxyy+zyz

=x+yzxyzy+zxxyz

=xz+yzxy+xzxyz

=xz+yzxyxzxyz

=yzxxyz=zxxz


Câu 20:

Thực hiện các phép cộng, trừ phân thức sau:

d) 2x312x29;

Xem đáp án

d, 2x312x29

=2x312x3x+3

=2x+3x3x+312x3x+3

=2x+612x3x+3=2x6x3x+3

=2x3x3x+3=2x+3


Câu 21:

Thực hiện các phép cộng, trừ phân thức sau:

e) 1x2+2x24x+4.

Xem đáp án

e, 1x2+2x24x+4

=1x2+2x22

=x2x22+2x22

=x2+2x22=xx22


Câu 22:

Thực hiện các phép tính sau:

a) x+2x1x3x1+x41x;

Xem đáp án

a, x+2x1x3x1+x41x

=x+2x3x1+x4x1

=x+2x+3x1x4x1

=5x4x1=5x+4x1=9xx1


Câu 23:

Thực hiện các phép tính sau:

b) 1x+51x5+2xx225;

Xem đáp án

b, 1x+51x5+2xx225

=1x+51x5+2xx+5x5

=x5x+5x5x+5x+5x5+2xx+5x5

=x5x+5+2xx+5x5

=x5x5+2xx+5x5

=2x10x+5x5

=2x5x+5x5=2x+5


Câu 24:

Thực hiện các phép tính sau:

c) x+2y2x+yy.

Xem đáp án

c) x+2y2x+yy

=xy+2y2x+y

=xyx+yx+y+2y2x+y

=x2y2+2y2x+y=x2+y2x+y.


Câu 25:

Cùng đi từ thành phố A đến thành phố B cách nhau 450 km, xe khách chạy với tốc độ x (km/h); xe tải chạy với tốc độ y (km/h) (x > y). Nếu xuất phát cùng lúc thì xe khách đến thành phố B sớm hơn xe tải bao nhiêu giờ?

Xem đáp án

Thời gian xe khách đi từ thành phố A đến thành phố B là: 450x (giờ).

Thời gian xe tải đi từ thành phố A đến thành phố B là: 450y (giờ).

Vì x > y nên xe khách đến thành phố B sớm hơn xe tải hay xe tải đi mất thời gian nhiều hơn xe khách.

Do đó nếu xuất phát cùng lúc thì xe khách đến thành phố B sớm hơn xe tải số giờ là:

450y450x=450xxy450yxy=450x450yxy (giờ).


Câu 26:

Có ba hình hộp chữ nhật A, B, C có chiều dài, chiều rộng và thể tích được cho như Hình 2. Hình B và C có các kích thước giống nhau, hình A có cùng chiều rộng với B và C.

a) Tính chiều cao của các hình hộp chữ nhật. Biểu thị chúng bằng các phân thức cùng mẫu số.

Có ba hình hộp chữ nhật A, B, C có chiều dài, chiều rộng và thể tích được cho như Hình 2. Hình B và C có các kích thước giống nhau (ảnh 1)
Xem đáp án

a) Diện tích đáy của hình hộp chữ nhật A là: xz (cm2).

Chiều cao của hình hộp chữ nhật A là: axz (cm).

Diện tích đáy của hình hộ chữ nhật B là: yz (cm2).

Chiều cao của hình hộp chữ nhật B là: byz (cm).

Do hình B và C có các kích thước giống nhau nên chiều cao của hình hộp chữ nhật C là byz (cm).

Biểu thị các phân thức axz byz bằng các phân thức cùng mẫu số như sau: axz=ayxyz;byz=bxxyz.

Vậy chiều cao của hình hộp chữ nhật A, B và C lần lượt là ayxyz (cm); bxxyz (cm) và bxxyz (cm).


Câu 27:

b) Tính tổng chiều cao của hình A và C, chênh lệch chiều cao của hình A và B.

Xem đáp án

b) Tổng chiều cao của hình A và C là: ayxyz+bxxyz=ay+bxxyz (cm).

Chênh lệch chiều cao của hình A và B là: ayxyzbxxyz=aybxxyz (cm).


Bắt đầu thi ngay