Trắc nghiệm Bài tập Giải bài toán bằng cách lập phương trình (tiếp) - Luyện tập (trang 31-32) (đáp án)
Trắc nghiệm Bài tập Giải bài toán bằng cách lập phương trình (tiếp) - Luyện tập (trang 31-32) (đáp án)
-
697 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Năm nay, tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương thôi. Hỏi năm nay Phương bao nhiêu tuổi?
* Phân tích:
Tuổi Phương | Tuổi mẹ | |
Năm nay | x | 3x |
13 năm sau | x + 13 | 3x + 13 |
Sử dụng dữ kiện 13 năm sau tuổi mẹ chỉ gấp hai lần tuổi Phương nên ta có phương trình:
3x + 13 = 2(x + 13)
* Giải:
Gọi x là tuổi Phương năm nay (x > 0; x ∈ N )
Tuổi của mẹ năm nay là: 3x
Tuổi Phương 13 năm sau: x + 13
Tuổi của mẹ 13 năm sau: 3x + 13
13 năm nữa tuổi mẹ chỉ gấp 2 lần tuổi Phương nên ta có phương trình:
3x + 13 = 2(x + 13)
⇔ 3x + 13 = 2x + 26
⇔ 3x – 2x = 26 – 13
⇔ x = 13 (thỏa mãn điều kiện xác định)
Vậy năm nay Phương 13 tuổi.
Đáp án A
Câu 2:
Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu 370. Tìm số ban đầu.
* Phân tích:
Với một số có hai chữ số bất kì ta luôn có:
Khi thêm chữ số 1 xen vào giữa ta được số:
Vì chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên ta có y = 2x.
Số mới lớn hơn số ban đầu 370 nên ta có phương trình:
100x + 10 + 2x = 10x + 2x + 370.
* Giải:
Gọi chữ số hàng chục của số cần tìm là x (x ∈ N; 0 < x ≤ 9).
⇒ Chữ số hàng đơn vị là 2x
⇒ Số cần tìm bằng
Sau khi viết thêm chữ số 1 vào giữa hai chữ số ta được số mới là:
Theo đề bài số mới lớn hơn số ban đầu 370, ta có B = A + 370 nên ta có phương trình
102x + 10 = 12x + 370
⇔ 102x – 12x = 370 – 10
⇔ 90x = 360
⇔ x = 4 (thỏa mãn)
Vậy số cần tìm là 48.
*Lưu ý : Vì chỉ có 4 số có hai chữ số thỏa mãn điều kiện chữ số hàng đơn vị gấp đôi chữ số hàng chục là : 12 ; 24 ; 36 ; 48 nên ta có thể đi thử trực tiếp mà không cần giải bằng cách lập phương trình.
Đáp án C
Câu 3:
Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đó thì ta được một số lớn hơn gấp 153 lần số ban đầu.
Đáp án B
Gọi số có hai chữ số cần tìm là
Khi viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì ta được số mới là
Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình :
Vậy số cần tìm là 14.
* Lưu ý : Ở bài toán này ta coi cả số là một ẩn.
Các bạn có thể đặt ẩn đơn giản là x hoặc A … nhưng khi phân tích số thì các bạn cần lưu ý nó là số có 4 chữ số nên , nếu bạn phân tích thành là sai.
Câu 4:
Tìm phân số có đồng thời các tính chất sau:
a) Tử số của phân số là số tự nhiên có một chữ số;
b) Hiệu giữa tử số và mẫu số bằng 4.
c) Nếu giữ nguyên tử số và viết thêm vào bên phải của mẫu số một chữ số đúng bằng tử số, thì ta được một phân số bằng phân số 1/5.
Đáp án C
Gọi tử số của phân số cần tìm là x (0 < x < 10, x ∈ N).
+ Tử số là số tự nhiên có một chữ số nên ta có điều kiện 0 < x < 10.
+ Hiệu giữa tử số và mẫu số bằng 4 nên mẫu số bằng x – 4.
+ Viết thêm chữ số đúng bằng tử số vào bên phải của mẫu số ta được mẫu số mới là:
Phân số mới bằng 1/5 nên ta có phương trình :
Vậy không có phân số thỏa mãn yêu cầu đề bài.
Câu 5:
Điểm kiểm tra Toán của một lớp được cho trong bảng dưới đây:
trong đó có 2 ô còn trống (thay bằng dấu *). Hãy điền số thích hợp vào ô trống, nếu điểm trung bình của lớp là 6,06.
Đáp án A
Gọi x là tần số của điểm 4 (x > 0; x ∈ N)
Số học sinh của lớp:
2 + x + 10 + 12 + 7 + 6 + 4 + 1 = 42 + x
Vì điểm trung bình bằng 6,06 nên
⇔ 6 + 4x + 50 + 72 + 49 + 48 + 36 + 10 = 6,06(42 + x)
⇔ 271 + 4x = 254,52 + 6,06x ⇔ 16,48 = 2,06x
⇔ x = 8 (thỏa mãn điều kiện đặt ra)
Vậy ta có kết quả điền vào như sau:
Điểm (x) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Tần số (f) | 0 | 0 | 2 | 8 | 10 | 12 | 7 | 6 | 4 | 1 | N = 50 |
Câu 6:
Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 20 ngày. Do cải tiến kĩ thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nữa. Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng.
Đáp án B
Cách 1:
* Phân tích:
Ta có: Số sản phẩm dệt được = năng suất . số ngày dệt.
Năng suất | Số ngày dệt | Tổng sản phẩm | |
Dự tính | x | 20 | 20.x |
Thực tế sau khi cải tiến | x + 20%.x = 1,2x | 18 | 18.1,2.x |
Thực tế dệt được nhiều hơn dự tính 24 tấm nên ta có phương trình:
18.1,2x = 20x + 24
* Giải:
Gọi x là năng suất dự tính của xí nghiệp (sản phẩm/ngày); (x ∈ N*) .
⇒ Số thảm len dệt được theo dự tính là: 20x (thảm).
Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là: x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày).
Sau 18 ngày, xí nghiệp dệt được: 18.1,2x = 21,6.x (thảm).
Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:
21,6.x = 20x + 24
⇔ 21,6x – 20x = 24
⇔ 1,6x = 24
⇔ x = 15 (thỏa mãn)
Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm).
Cách 2:
Gọi x là số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng (x ∈ N*) ( tấm)
Số tấm thảm len mỗi ngày dự định dệt là: ( tấm ).
Số tấm thảm len thực tế đã dệt là x + 24 ( tấm) .
Trên thực tế, số tấm thảm len mỗi ngày dệt được là: tấm
Vì năng suất của xí nghiệp tăng 20% nên số thảm thực tế dệt được trong một ngày bằng ( 1+ 20%) = 120% số thảm dự định dệt trong 1 ngày. Ta có phương trình:
Câu 7:
Một người lái ô tô dự định đi từ A đến B với vận tốc 48km/h. Nhưng sau khi đi được 1 giờ với vận tốc ấy, ô tô bị tàu hỏa chắn đường trong 10 phút. Do đó, để kịp đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 6km/h. Tính quãng đường AB.
Đáp án C
* Phân tích:
Ta luôn có: Quãng đường = vận tốc . thời gian
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.
Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).
Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).
Quãng đường BC | Vận tốc | Thời gian | |
Dự tính | x | 48 | |
Thực tế | x | 48 + 6 = 54 |
Ta có phương trình:
* Giải:
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ
⇒ SAC = 48.1 = 48 (km).
Gọi quãng đường BC dài là x (km; x > 0).
Vận tốc dự tính đi trên BC là: 48 km/h
⇒ Thời gian dự tính đi quãng đường BC hết: (giờ).
Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).
⇒ Thời gian thực tế ô tô đi quãng đường BC là: (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).
Do đó ta có phương trình:
⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).
Vậy quãng đường AB là:
SAB = SAC + SBC = 48 + 72 = 120 (km).
Câu 8:
Năm ngoái, tổng số dân của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh.
Đáp án A
* Phân tích:
Năm ngoái | Năm nay | |
Tỉnh A | x | x + x.1,1% = 1,011.x |
Tỉnh B | 4 – x | (4 – x) + (4 – x).1,2% = (4 – x).1,012 |
Dân số tỉnh A năm nay nhiều hơn dân số tỉnh B là 807200 người = 0,8072 (triệu người) nên ta có phương trình:
1,011.x - 1,012.(4 – x) = 0,8072.
* Giải:
Gọi x là số dân năm ngoái của tỉnh A (0 < x < 4; x ∈ N*; triệu người)
Số dân năm ngoái của tỉnh B: 4 – x (triệu người).
Năm nay dân số của tỉnh A tăng 1,1 % nên số dân của tỉnh A năm nay: x + 1,1% x = 1,011.x
Năm nay dân số của tỉnh B tăng 1,2 % nên số dân của tỉnh B năm nay: (4 – x) + 1,2% (4 – x) = 1,012(4 – x)
Vì số dân tỉnh A năm nay hơn tỉnh B là 807200 người = 0,8072 triệu người nên ta có phương trình:
1,011.x - 1,012(4 – x) = 0,8072
⇔ 1,011x – 4,048 + 1,012x = 0,8072
⇔ 2,023. x = 4,8552
⇔ x = 2,4 (thỏa mãn).
Vậy dân số của tỉnh A năm ngoái là 2,4 triệu người, dân số tỉnh B năm ngoái là 4 – 2,4 = 1,6 triệu người
Câu 9:
Đố: Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từng miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình 5 thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC.
Đáp án B
Gọi x (cm) là độ dài cạnh AC (x > 2).
Gọi hình chữ nhật là MNPA như hình vẽ.
Ta có: MC = AC – AM = x – 2 (cm)
Vì MN // AB nên theo định lý Talet ta có tỉ lệ:
Vì diện tích tam giác ABC gấp đôi diện tích hình chữ nhật MNPA nên ta có phương trình:
Vậy độ dài đoạn thẳng AC là 4cm.
Câu 10:
Tìm hai số nguyên liên tiếp, biết rằng 2 lần số nhỏ cộng 3 lần số lớn bằng - 87.
Đáp án A
Gọi x là số nhỏ trong hai số nguyên cần tìm; x ∈ Z.
⇒ x + 1 là số thứ hai cần tìm.
Theo giả thiết, ta có 2 lần số nhỏ cộng 3 lần số lớn bằng - 87
Khi đó ta có: 2x + 3( x + 1 ) = - 87
⇔ 2x + 3x + 3 = - 87 ⇔ 5x = - 90 ⇔ x = - 18.
So sánh với điều kiện x = - 18 thỏa mãn.
Vậy: Số thứ nhất cần tìm là - 18, số thứ hai là - 17.
Câu 11:
Một đội công nhân sửa một đoạn đường trong 3 ngày. Ngày thứ nhất đội sửa được 1/3 đoạn đường, ngày thứ hai đội sửa được một đoạn đường bằng 4/3 đoạn được làm được trong ngày thứ nhất, ngày thứ ba đội sửa 80m còn lại. Tính chiều dài đoạn đường mà đội phải sửa.
Đáp án C
Gọi x ( m ) là độ dài đoạn đường đội công nhân đó phải sửa; x > 80.
+ Ngày thứ nhất đội đó sửa được x/3 ( m ) đường.
+ Ngày thứ hai đội đó sửa được 4/3.x/3 = (4x)/9 ( m ) đường
+ Ngày thứ ba đội đó sửa được x - x/3 - (4x)/9 = (2x)/9 ( m )
Theo giả thiết ngày thứ ba đội đó sửa được 80m
Khi đó ta có (2x)/9 = 80 ⇔ x = 80:2/9 = 360 ( m ).
Vậy độ dài quãng đường cần sửa là 360 m.
Câu 12:
Một xe đạp khởi hành từ điểm A, chạy với vận tốc 20 km/h. Sau đó 3 giờ, một xe hơi đuổi theo với vận tốc 50 km/h. Hỏi xe hơi chạy trong bao lâu thì đuổi kịp xe đạp?
Đáp án B
Gọi t ( h ) là thời gian từ lúc xe hơi chạy đến lúc đuổi kịp xe đạp; t > 0.
⇒ t + 3 ( h ) là thời gian kể từ lúc xe đạp đi đến lúc xe hơi đuổi kịp.
+ Quãng đường xe đạp đi được là s1 = 20( t + 3 ) km.
+ Quãng đường xe hơi đi được là s2 = 50t km.
Vì hai xe xuất phát tại điểm A nên khi gặp nhau s1 = s2.
Khi đó ta có: 20( t + 3 ) = 50t ⇔ 50t - 20t = 60 ⇔ 30t = 60 ⇔ t = 2( h ) (thỏa mãn)
Vậy xe hơi chạy được 2 giờ thì đuổi kịp xe đạp.
Câu 13:
Chu vi một khu vườn hình chữ nhật bằng 60m, hiệu độ dài của chiều dài và chiều rộng là 20m. Tìm độ dài các cạnh của hình chữ nhật.
Đáp án A
Gọi x ( m ) là độ dài chiều rộng của hình chữ nhật; x > 0.
⇒ x + 20 ( m ) là độ dài chiều dài của hình chữ nhật.
Theo giả thiết ta có chu vi hình chữ nhật bằng 60 m.
Khi đó ta có P = 2( x + x + 20 ) = 60 ⇔ 2x + 20 = 30 ⇔ 2x = 10 ⇔ x = 5.
Do đó: Chiều rộng hình chữ nhật là 5m.
Chiều dài hình chữ nhật là 25m.
Câu 14:
Hai lớp A và B của một trường trung học tổ chức cho học sinh tham gia một buổi meeting. Người ta xem xét số học sinh mà một học sinh lớp A nói chuyện với học sinh lớp B thì thấy rằng: Bạn Khiêm nói chuyện với 5 bạn, bạn Long nói chuyện với 6 bạn, bạn Tùng nói chuyện với 7 bạn,…và đến bạn Hải là nói chuyện với cả lớp B. Tính số học sinh lớp B biết 2 lớp có tổng cộng 80 học sinh.
Đáp án C
Gọi số học sinh lớp A là x (x ∈ N*, x < 80)
Bạn thứ nhất của lớp A (Khiêm) nói chuyện với 4 + 1 bạn
Bạn thứ hai của lớp A (Long) nói chuyện với 4 + 2 bạn
Bạn thứ ba của lớp A (Tùng) nói chuyện với 4 + 3 bạn
…………………
Bạn thứ x của lớp A (Hải) nói chuyện với tất cả các bạn lớp B
Do đó số học sinh lớp B là 4 + x
Vì 2 lớp có tổng cộng 80 học sinh nên ta có:
x + (4 + x) = 80
⇔ 2x - 76 = 0
⇔ x = 38
Vậy số học sinh lớp B là: 80 - 38 = 42 (Học sinh)
Câu 15:
Khiêm đi từ nhà đến trường, Khiêm thấy cứ 10 phút lại gặp một xe buýt đi theo hướng ngược lại. Biết rằng cứ 15 phút lại có 1 xe buýt đi từ nhà Khiêm đến trường và cũng 15 phút lại có 1 xe buýt đi theo chiều ngược lại. Các xe chuyển động với cùng vận tốc. Hỏi cứ sau bao nhiêu phút thì có 1 xe cùng chiều vượt qua Khiêm.
Đáp án D
Gọi thời gian phải tìm là x (Phút)
Gọi thời gian Khiêm đi từ nhà đến trường là a (Phút)
Số xe Khiêm gặp khi đi từ nhà đến trường đi theo hướng ngược lại là: a/10
Số xe Khiêm gặp khi đi từ nhà đến trường đi theo hướng cùng chiều là: a/x
Số xe đi qua Khiêm khi Khiêm đi từ nhà đến trường cũng chính là số xe đã đi trên đoạn đường từ nhà Khiêm đến trường theo cả 2 chiều là:
Ta có phương trình:
Vậy cứ sau 30 phút lại có xe cùng chiều vượt qua Khiêm.