IMG-LOGO
Trang chủ Lớp 8 Toán Trắc nghiệm chuyên đề Toán 8 Chủ đề 8: Hình chữ nhật có đáp án

Trắc nghiệm chuyên đề Toán 8 Chủ đề 8: Hình chữ nhật có đáp án

Trắc nghiệm chuyên đề Toán 8 Chủ đề 8: Hình chữ nhật có đáp án

  • 450 lượt thi

  • 8 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Chứng minh tứ giác AHCE là hình chữ nhật.

Xem đáp án
Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. (ảnh 1)

+ Trong Δ AHC vuông có I là trung điểm của AC

HE là đường trung tuyến của Δ AHC.

HI = 12AC = AI = IC.

Mà E đối xứng với H qua I HI = IE.

Khi đó ta có HI = IE = AI = IC.

+ Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE

mà CI = 12HE Δ HCE vuông tại C.

Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.

Xét tứ giác AHCE có EAH^=AHC^=HCE^=CEA^ = 900

AHCE là hình chữ nhật.

Câu 2:

Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Giải thích ?

Xem đáp án
Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các (ảnh 1)

Tứ giác EFGH là hình chữ nhật.

Giải thích: Theo giả thiết ta có EF, GH lần lượt là đường trung bình của tam giác Δ ABC,Δ ADC

Áp dụng định lí đường trung bình vào hai tam giác ta được

Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các (ảnh 2)

Chứng minh tương tự: EH//FG//BD      ( 2 )

Từ ( 1 ) và ( 2 ), tứ giác EFGH có hai cặp cạnh đối song song nên tứ giác EFGH là hình bình hành.

Gọi O là giao điểm của AC và BD, I là giao điểm của EF với BD.

Áp dụng tính chất của các góc đồng vị vào các đường thẳng song song ở trên và giả thiết nên ta có:

Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các (ảnh 3)

Hình bình hành EFGH có một góc vuông nên EFGH là hình chữ nhật.


Câu 3:

Tìm giá trị của x từ các thông tin trên hình sau ?

Tìm giá trị của x từ các thông tin trên hình sau ? (ảnh 1)
Xem đáp án

Kẻ BH CD, tứ giác ABHD có A^= ABH^= BHD^ = 900

Tứ giác ABHD là hình chữ nhật.

Áp dụng tính chất của hình chữ nhật ta có:

Tìm giá trị của x từ các thông tin trên hình sau ? (ảnh 2)

Ta có: CD = DH + HC HC = CD - DH = 15 - 10 = 5( cm )

+ Xét Δ BCH, áp dụng định lý Py – to – go ta có:

BC2 = HC2 + BH2  BH2 = BC2 - HC2

BH=(BC2 - HC2)=(132 - 52)=12( cm )

Do đó BH = AD = x = 12( cm ). Vậy x = 12


Câu 4:

Chọn đáp án đúng nhất trong các đáp án sau?
Xem đáp án
Chọn đáp án B.

Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông.


Câu 5:

Tìm câu sai trong các câu sau
Xem đáp án
Chọn đáp án C.

Định lý trong hình chữ nhật

+ Hình chữ nhật có hai đường chéo bằng nhau.

+ Hình chữ nhật có hai đường chéo cắt nhau tại trung điểm tại trung điểm mỗi đường.

+ Giao của hình đường chéo của hình chữ nhật là tâm của hình chữ nhật đó.

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông

Đáp án C sai.


Câu 6:

Các dấu hiệu nhận biết sau, dấu hiệu nào nhận biết chưa đúng?
Xem đáp án
Chọn đáp án A.

Dấu hiệu nhận biết hình chữ nhật:

+ Tứ giác có ba góc vuông là hình chữ nhật.

+ Hình thang cân có một góc vuông là hình chữ nhật.

+ Hình bình hành có một góc vuông là hình chữ nhật.

+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường chưa đủ điều kiện để là hình chữ nhật.


Câu 7:

Khoanh tròn vào phương án sai
Xem đáp án
Chọn đáp án D.

Định lý

+ Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

+ Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì vuông góc với cạnh huyền nếu tam giác vuông đó là tam giác vuông cân.


Câu 8:

Trong hình chữ nhật có kích thước lần lượt là 5cm và 12cm. Độ dài đường chéo của hình chữ nhật là ?
Xem đáp án
Chọn đáp án B.

Độ dài của đường chéo hình chữ nhật bằng căn bậc hai tổng hai bình phương của hai kích thước hình chữ nhật

Do đó, độ dài đường chéo là (52 + 122) = 13( cm )


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương