IMG-LOGO
Trang chủ Lớp 8 Toán Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung có đáp án

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung có đáp án

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung có đáp án (Vận dụng)

  • 1993 lượt thi

  • 12 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 4:

Cho (a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b). Khi đặt nhân tử chung (a – b) ra ngoài thì nhân tử còn lại là

Xem đáp án

Ta có

(a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b)

= (a – b)(a + 2b) + (a – b)(2a – b) – (a – b)(a + 3b)

= (a – b)(a + 2b + 2a – b – (a + 3b))

= (a – b)(3a + b – a – 3b) = (a – b)(2a – 2b)

Vậy khi đặt nhân tử chung (a – b) ra ngoài ta được biểu thức còn lại là 2a – 2b.

Đáp án cần chọn là: A


Câu 5:

Cho 4xn+2 – 8xn (n Є N*). Khi đặt nhân tử chung xn ra ngoài thì nhân tử còn lại là

Xem đáp án

Ta có 4xn+2 – 8xn = 4xn.x2 – 8xn = xn(4x2 – 8)

Vậy khi đặt nhân tử chung xn ra ngoài ta được biểu thức còn lại là 4x2 – 8

Đáp án cần chọn là: B


Câu 6:

Cho A = 2019n+1 – 2019n. Khi đó A chia hết cho số nào dưới đây với mọi n  N.

Xem đáp án

Ta có A = 2019n+1 – 2019n

= 2019n.2019 – 2019n = 2019n(2019 – 1) = 2019n.2018

Vì 2018 = 2018 => A = 2018 với mọi n  N.

Đáp án cần chọn là: B


Câu 7:

Cho B = 85 – 211. Khi đó B chia hết cho số nào dưới đây?

Xem đáp án

Ta có B = 85 – 211 = (23)5 – 211 = 215 – 211 = 211.24 – 211

          = 211(24 – 1) = 15.211

Vì 15 = 15 => B = 15.211 = 15

Đáp án cần chọn là: C


Câu 8:

Cho M = 101n+1 – 101n. Khi đó M có hai chữ số tận cùng là

Xem đáp án

Ta có M = 101n+1 – 101n = 101n.101 – 101n

          = 101n(101 – 1) = 101n.100

Suy ra M có hai chữ số tận cùng là 00.

Đáp án cần chọn là: A


Câu 9:

Biết a – 2b = 0. Tính giá trị của biểu thức B = a(a – b)3 + 2b(b – a)3

Xem đáp án

Ta có B = a(a – b)3 + 2b(b – a)3

          = a(a – b)3 – 2b(a – b)3 = (a – 2b)(a – b)3

Mà a – 2b = 0 nên B = 0.(a – b)3 = 0

Vậy B = 0

Đáp án cần chọn là: A


Câu 10:

Biết x2 + y2 = 1. Tính giá trị của biểu thức M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)

Xem đáp án

Ta có

M = 3x2(x2 + y2) + 3y2(x2 + y2) – 5(y2 + x2)

= (x2 + y2)(3x2 + 3y2 – 5)

= (x2 + y2)[3(x2 + y2) – 5]

Mà x2 + y2 = 1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2

Đáp án cần chọn là: D


Câu 12:

Cho biết x3 = 2p + 1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.

Xem đáp án

Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x3 = 2p + 1 nên x3 cũng là một số lẻ, suy ra x là số lẻ

Gọi x = 2k + 1 (k  N). ta có

x3 = 2p + 1  (2k + 1)3 = 2p + 1

 8k3 + 12k2 + 6k + 1 = 2p + 1  2p = 8k3 + 12k2 + 6k

 p = 4k3 + 6k2 + 3k = k(4k2 + 6k + 3)

Mà p là số nguyên tố nên k = 1 => x = 3

Vậy số cần tìm là x = 3

Đáp án cần chọn là: D


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương