Ôn tập chương 4: Bất phương trình bậc nhất một ẩn
-
2275 lượt thi
-
13 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho ví dụ về bất đẳng thức theo từng loại có chứa dấu <, ≤, > và ≥.
- Bất đẳng thức chứa dấu <: -3 < (-2) + 1
- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3
- Bất đẳng thức chứa dấu >: 4 > (-1) + 3
- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4
Câu 2:
Bất phương trình bậc nhất một ẩn có dạng như thế nào? Cho ví dụ.
Bất phương trình bậc nhất một ẩn có dạng: ax + b < 0 (hoặc ax + b > 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a, b là hai số đã cho, a ≠ 0.
Ví dụ: 2x + 4 < 0 (hoặc 2x + 4 > 0, 2x + 4 ≤ 0, 2x + 4 ≥ 0)
Câu 3:
Hãy chỉ ra một nghiệm của bất phương trình trong ví dụ của Câu hỏi 2.
Ví dụ: 2x + 4 < 0
⇔ 2x < -4 ⇔ x < -2
Ví dụ -3 là một nghiệm của bất phương trình này.
Câu 4:
Phát biểu quy tắc chuyển vế để biến đổi bất phương trình. Quy tắc này dựa trên tính chất nào của thứ tự trên tập số?
Quy tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu của hạng tử đó.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép cộng trên tập số (sgk trang 36 Toán 8 Tập 2):
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Câu 5:
Phát biểu quy tắc nhân để biến đổi bất phương trình. Quy tắc này dựa trên tính chất nào của thứ tự trên tập số?
Quy tắc nhân: Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
- Giữ nguyên chiều bất phương trình nếu số đó dương;
- Đổi chiều bất phương trình nếu số đó âm.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép nhân trên tập số (sgk trang 36 Toán 8 Tập 2):
- Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
- Khi nhân cả hai vế của bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
Câu 6:
Cho m > n. Chứng minh:
a) m + 2 > n + 2 ; b) -2m < - 2n
c) 2m - 5 > 2n - 5 ; d) 4 - 3m < 4 - 3n
a) Ta có: m > n ⇒ m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n ⇒ -2m < -2n (nhân hai vế với -2 và đổi chiều bất đẳng thức)
c) m > n ⇒ 2m > 2n (nhân hai vế với 2)
⇒ 2m - 5 > 2n - 5 (cộng hai vế với -5)
d) m > n ⇒ -3m < -3n (nhân hai vế với -3 và đổi chiều bất đẳng thức)
⇒ 4 - 3m < 4 - 3n (cộng hai vế với 4)
Câu 7:
Kiểm tra xem -2 là nghiệm của bất phương trình nào trong các bất phương trình sau:
a) -3x + 2 > -5 ; b) 10 - 2x < 2
c) x2 - 5 < 1 ; d) |x| < 3
e) |x| > 2 ; f) x + 1 > 7 - 2x
Lần lượt thay x = -2 vào từng bất phương trình:
a) -3x + 2 = -3.(-2) + 2 = 8
Vì 8 > -5 nên x = -2 là nghiệm của bất phương trình -3x + 2 > -5.
b) 10 – 2x = 10 – 2.(-2) = 10 + 4 = 14
Vì 14 > 2 nên x = -2 không phải nghiệm của bất phương trình 10 – 2x < 2.
c) x2 – 5 = (-2)2 – 5 = 4 – 5 = -1
Vì -1 < 1 nên x = -2 là nghiệm của bất phương trình x2 – 5 < 1.
d) |x| = |-2| = 2
Vì 2 < 3 nên x = -2 là nghiệm của bất phương trình |x| < 3.
e) |x| = |-2| = 2
Vì 2 = 2 nên x = -2 không phải nghiệm của bất phương trình |x| > 2.
f) x + 1 = -2 + 1 = -1.
7 – 2x = 7 – 2.(-2) = 7 + 4 = 11
Vì -1 < 11 nên x = -2 không phải nghiệm của bất phương trình x + 1 > 7 – 2x.
Câu 8:
Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:
a) x - 1 < 3 ; b) x + 2 > 1
c) 0,2x < 0,6 ; d) 4 + 2x < 5
a) x – 1 < 3
⇔ x < 3 + 1 (Chuyển vế và đổi dấu hạng tử -1)
⇔ x < 4
Vậy bất phương trình có nghiệm x < 4.
b) x + 2 > 1
⇔ x > 1 – 2
⇔ x > -1.
Vậy bất phương trình có nghiệm x > -1.
c) 0,2x < 0,6
⇔ 5.0,2x < 5.0,6
⇔ x < 3.
Vậy bất phương trình có nghiệm x < 3.
d) 4 + 2x < 5
⇔ 2x < 5 – 4
⇔ 2x < 1
⇔
Vậy bất phương trình có nghiệm
Câu 9:
Giải các bất phương trình:
⇔ 2 – x < 5.4 (Nhân cả hai vế với 4 > 0)
⇔ 2 – x < 20
⇔ 2 – 20 < x (Chuyển vế và đổi dấu hạng tử -x và 20)
⇔ -18 < x hay x > -18.
Vậy bất phương trình có nghiệm x > -18.
⇔ 3.5 ≤ 2x + 3 (Nhân cả hai vế với 5 > 0)
⇔ 15 ≤ 2x + 3
⇔ - 2x ≤ 3 – 15 (Chuyển vế và đổi dấu hạng tử 15; 2x)
⇔ - 2x ≤ - 12
⇔ x ≥ 6 (Chia cả hai vế cho - 2 < 0)
Vậy bất phương trình có nghiệm x ≥ 6.
( nhân cả hai vế với 15 > 0)
⇔ 5( 4x – 5) > 3( 7- x)
⇔ 20x – 25 > 21 – 3x
⇔ 20x + 3x > 21 + 25 (chuyển vế hạng tử - 25; - 3x)
⇔ 23 x > 46
⇔ x > 2
Vậy nghiệm của bất phương trình đã cho là x > 2 .
(Quy đồng mẫu)
⇔ -3(2x + 3) ≥ -4(4 – x )(nhân cả hai về với 12 > 0).
⇔ -6x – 9 ≥ -16 + 4x
⇔ 16 – 9 ≥ 4x + 6x (Chuyển vế và đổi dấu hạng tử -6x và -16)
⇔ 7 ≥ 10x
⇔ 0,7 ≥ x hay x ≤ 0,7
Vậy bất phương trình có nghiệm x ≤ 0,7.
Câu 10:
Giải các bất phương trình:
a) 3 – 2x > 4;
b) 3x + 4 < 2 ;
c) (x – 3)2 < x2 – 3;
d) (x – 3)(x + 3) < (x + 2)2 + 3.
a) 3 – 2x > 4
⇔ -2x > 4 – 3
⇔ -2x > 1 (Chuyển vế và đổi dấu hạng tử 3)
⇔ (Chia cả hai vế cho -2 < 0, BPT đổi chiều)
Vậy bất phương trình có nghiệm
b) 3x + 4 < 2
⇔ 3x < 2 - 4 (Chuyển vế và đổi dấu hạng tử 4)
⇔ 3x < -2
⇔ (Chia cả hai vế cho 3 > 0, BPT không đổi chiều)
Vậy BPT có nghiệm
c) (x – 3)2 < x2 – 3
⇔ x2 – 6x + 9 < x2 – 3
⇔ x2 – 6x – x2 < -3 – 9
⇔ -6x < -12
⇔ x > 2 (Chia cả hai vế cho -6 < 0, BPT đổi chiều)
Vậy BPT có nghiệm x > 2.
d) (x – 3)(x + 3) < (x + 2)2 + 3
⇔ x2 – 9 < x2 + 4x + 4 + 3
⇔ x2 – x2 - 4x < 4+ 3 + 9 (Chuyển vế và đổi dấu các hạng tử)
⇔ - 4x < 16
⇔ x > -4 (Chia cả hai vế cho -4 < 0, BPT đổi chiều).
Vậy BPT có nghiệm x > -4.
Câu 11:
Tìm x sao cho:
a) Giá trị của biểu thức 5 - 2x là số dương;
b) Giá trị của biểu thức x + 3 nhỏ hơn giá trị của biểu thức 4x - 5;
c) Giá trị của biểu thức 2x + 1 không nhỏ hơn giá trị của biểu thức x + 3;
d) Giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2;
a) Để giá trị biểu thức 5 – 2x là số dương
⇔ 5 – 2x > 0
⇔ -2x > -5 (Chuyển vế và đổi dấu hạng tử 5)
⇔ (Chia cả hai vế cho -2 < 0, BPT đổi chiều)
Vậy
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
⇔ x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
⇔ -3x < -8
⇔ (Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
⇔ 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
⇔ x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
⇔ x2 + 1 ≤ x2 – 4x + 4
⇔ x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
⇔ 4x ≤ 3
⇔ ( chia cả hai vế cho 4 > 0)
Vậy
Câu 12:
Đố:
Trong một cuộc thi đố vui, ban tổ chức quy định mỗi người dự thi phải trả lời 10 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi này có sẵn 4 đáp án, nhưng trong đó chỉ có 1 đáp án đúng. Người dự thi chọn đáp án đúng sẽ được 5 điểm, chọn đáp án sai sẽ bị trừ 1 điểm. Ở vòng sơ tuyển Ban tổ chức tăng cho mỗi người thi 10 điểm và quy định người nào có tổng số điểm từ 40 trở lên mới được dự thi ở vòng tiếp theo. Hỏi người dự thi phải trả lời chính xác bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được dự thi tiếp ở vòng sau?
Gọi x là số câu trả lời đúng (0 ≤ x ≤ 10, x ∈ N)
Số câu trả lời sai: 10 – x
Trả lời đúng x câu được 5x (điểm), trả lời sai 10 –x (câu) bị trừ (10- x) điểm.
Do đó, sau khi trả lời 10 câu thì người dự thi sẽ có: 5x – (10 – x) + 10
Để được dự thi tiếp vòng sau thì
Vậy người dự thi phải trả lời chính xác ít nhất 7 câu hỏi thì mới được dự thi ở vòng sau.
Câu 13:
Giải các phương trình:
a) |3x| = x + 8 ; b) |-2x| = 4x + 8
c) |x - 5| = 3x ; d) |x + 2| = 2x - 10
a) |3x| = x + 8 (1)
+ TH1: Xét x ≥ 0, khi đó |3x| = 3x,
(1) ⇔ 3x = x + 8
⇔ 3x – x = 8
⇔ 2x = 8
⇔ x = 4 > 0 (thỏa mãn)
+ TH2: Xét x < 0, khi đó |3x| = -3x
(1) ⇔ -3x = x + 8
⇔ -3x – x = 8
⇔ -4x = 8
⇔ x = -2 < 0 (thỏa mãn)
Vậy phương trình có tập nghiệm S = {4; -2}.
b) |-2x| = 4x + 18 (2)
+ TH1: xét x > 0, khi đó – 2x < 0 nên |-2x| = 2x
(2) ⇔ 2x = 4x + 18
⇔ 2x – 4x = 18
⇔ -2x = 18
⇔ x = -9 < 0 (loại)
+ TH2: Xét x ≤ 0, khi đó -2x ≥ 0 nên |-2x| = -2x
(2) ⇔ -2x = 4x + 18
⇔ -2x – 4x = 18
⇔ -6x = 18
⇔ x = -3 < 0 (thỏa mãn)
Vậy phương trình có tập nghiệm S = {-3}.
c) |x – 5| = 3x (3)
+ TH1: Xét x ≥ 5, khi đó x - 5 ≥ 0 nên |x – 5| = x – 5
(3) ⇔ x – 5 = 3x
⇔ x – 3x = 5
⇔ -2x = 5
⇔ x = -2,5 < 5 (loại)
+ TH2: Xét x < 5, khi đó x - 5 < 0 nên |x – 5| = -(x – 5)
(3) ⇔ -(x – 5) = 3x
⇔ -x + 5 = 3x
⇔ -x - 3x = -5
⇔ -4x = -5
⇔ (thỏa mãn)
Vậy phương trình có tập nghiệm
d) |x + 2| = 2x – 10 (4)
+ TH1: Xét x ≥ -2, khi đó x + 2 ≥ 0 nên |x + 2| = x + 2
(4) ⇔ x + 2 = 2x – 10
⇔ 2 + 10 = 2x – x
⇔ 12 = x hay x = 12 > -2 (thỏa mãn)
+ TH2: Xét x < -2, khi đó x + 2 < 0 nên |x + 2| = -(x + 2)
(4) ⇔ -(x + 2) = 2x – 10
⇔ -x – 2 = 2x – 10
⇔ -x - 2x = -10 + 2
⇔ -3x = -8
⇔ (loại)
Vậy phương trình có tập nghiệm S = {12}.