Bài 3: Thể tích của hình hộp chữ nhật
-
3201 lượt thi
-
12 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Quan sát hình hộp chữ nhật (h.84):
- A’A có vuông góc với AD hay không ? Vì sao ?
- A’A có vuông góc với AB hay không ? Vì sao ?
- A’A có vuông góc với AD vì là hai cạnh kề nhau của hình chữ nhật AA’D’D
- A’A có vuông góc với AB vì là hai cạnh kề nhau của hình chữ nhật AA’B’B
Câu 2:
Tìm trên hình 84 các đường thẳng vuông góc với mặt phẳng (ABCD)
Ở hình 84:
- Đường thẳng AB có nằm trong mặt phẳng (ABCD) hay không ? Vì sao ?
- Đường thẳng AB có vuông góc với mặt phẳng (ADD'A') hay không ? Vì sao ?
- Các đường thẳng vuông góc với mặt phẳng (ABCD) : AA', BB', CC', DD'
- Đường thẳng AB có nằm trong mặt phẳng (ABCD) vì hai điểm A, B thuộc mặt phẳng (ABCD)
- Đường thẳng AB vuông góc với hai đường thẳng cắt nhau AD và AA’ của mặt phẳng (ADD'A') nên AB vuông góc với mặt phẳng (ADD'A').
Câu 3:
Tìm trên hình 84 các mặt phẳng vuông góc với mặt phẳng (A'B'C'D')
Các mặt phẳng vuông góc với mặt phẳng (A'B'C'D'): (AA'B'B), (BB'C'C), (CC'D'D), (DD'A'A)
Câu 4:
1) Gấp hình 87a theo các nét đã chỉ ra thì có được một hình hộp chữ nhật hay không?
2) Kí hiệu các đỉnh hình hộp gấp được như 87b.
a) Đường thẳng BF vuông góc với những mặt phẳng nào?
b) Hai mặt phẳng (AEHD) và (CGHD) vuông góc với nhau, vì sao?
1. Gấp hình 33.a theo các nét đã chỉ ra thì có được một hình hộp chữ nhật.
2. a) Trong hình hộp ABCD.EFGH thì:
+) BF vuông góc với hai đường thẳng cắt nhau EF và FG của mặt phẳng (EFGH) nên BF vuông góc với mặt phẳng (EFGH).
+) BF vuông góc với hai đường thẳng cắt nhau AB và BC của mặt phẳng (ABCD) nên BF vuông góc với mặt phẳng (ABCD).
b) Hai mặt phẳng (AEHD) và (CGHD)vuông góc với nhau vì mặt phẳng (AEHD) chứa đường thẳng EH vuông góc với mặt phẳng (CGHD).
Kiến thức áp dụng
+ Một đường thẳng vuông góc với một mặt phẳng nếu nó vuông góc với hai đường thẳng cắt nhau trong mặt phẳng đó.
+ Hai mặt phẳng được gọi là vuông góc nếu có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng còn lại.
Câu 5:
a) Tính các kích thước của một hình hộp chữ nhật, biết rằng chúng tỉ lệ với 3, 4, 5 và thể tích của hình hộp này là 480cm3.
b) Diện tích toàn phần của một hình lập phương là 486m2. Thể tích của nó là bao nhiêu?
Gọi a, b, c là ba kích thước của hình hộp chữ nhật.
Vậy các kích thước của hình chữ nhật là: 6cm; 8cm; 10cm.
Kiến thức áp dụng
+ Hình hộp chữ nhật có các kích thước bằng a, b, c thì có thể tích bằng: V = abc.
+ Hình lập phương có cạnh a thì có thể tích bằng: V = a3.
Câu 6:
A, B, C và D là những đỉnh của hình hộp chữ nhật cho ở hình 88. Hãy điền số thích hợp vào các ô trống ở bảng sau:
AB | 6 | 13 | 14 | |
BC | 15 | 16 | 34 | |
CD | 42 | 70 | 62 | |
DA | 45 | 75 | 75 |
Kết quả bài 12 minh họa công thức quan trọng sau:
Trước hết ta chứng minh hệ thức: DA2 = AB2 + BC2 + CD2.
+ ΔBCD vuông tại C suy ra: BD2 = BC2 + CD2 .
+ ΔABD vuông tại B ⇒ AD2 = AB2 + BD2
Mà BD2 = BC2 + CD2 ⇒ AD2 = AB2 + BC2 + CD2 .
Vậy AD2 = AB2 + BC2 + CD2 .
Áp dụng hệ thức trên để tính các cạnh còn thiếu trong bảng ta có:
+ Cột 1: AB = 6; BC = 15; CD = 42
⇒AD2 = AB2 + BC2 + CD2 = 62 + 152 + 422 = 2025
⇒AD = 45.
+ Cột 2: AB = 13; BC = 16; AD = 45
⇒CD2 = AD2 - AB2 - BC2 = 452 - 132 - 162 = 1600
⇒CD = 40.
+ Cột 3: AB = 14; CD = 70; DA = 75
⇒BC2 = DA2 - CD2 - AB2 = 752 - 702 - 142 = 529
⇒BC = 23
+ Cột 4: BC = 34; CD = 62; DA = 75
⇒AB2 = DA2 - BC2 - CD2 = 752 - 342 - 622 = 625
⇒AB = 25.
Vậy ta có kết quả như bảng sau:
AB | 6 | 13 | 14 | 25 |
BC | 15 | 16 | 23 | 34 |
CD | 42 | 40 | 70 | 62 |
DA | 45 | 45 | 75 | 75 |
Câu 7:
a) Viết công thức tính thể tích của hình hộp chữ nhật ABCD.MNPQ (h.89).
b) Điền số thích hợp vào các ô trống ở bảng sau:
Chiều dài | 22 | 18 | 15 | 20 |
Chiều rộng | 14 | |||
Chiều cao | 5 | 6 | 8 | |
Diện tích một đáy | 90 | 260 | ||
Thể tích | 1320 | 2080 |
a) Thể tích hình hộp chữ nhật ABCD.MNPQ là:
V = NM.NP.NB
b) Ta có công thức:
Thể tích = chiều dài x chiều rộng x chiều cao.
Diện tích một đáy = chiều dài x chiều rộng.
+ Cột 1: Chiều dài = 22; Chiều rộng = 14; chiều cao = 5.
Thể tích = 22.14.5 = 1540
Diện tích một đáy = 22.14 = 308.
+ Cột 2: Chiều dài = 18; chiều cao = 6; diện tích một đáy = 90
chiều rộng = 90 : 18 = 5
thể tích = 18.5.6 = 540.
+ Cột 3: chiều dài = 15; chiều cao = 8; thể tích = 1320
chiều rộng = 1320 : 15 : 8 = 11
Diện tích một đáy = 11.15 = 165
+ Cột 4 : chiều dài = 20; diện tích một đáy = 260; thể tích = 2080
chiều rộng = 260 : 20 = 13
chiều cao = 2080 : 260 = 8.
Vậy ta có bảng hoàn chỉnh dưới đây:
Chiều dài | 22 | 18 | 15 | 20 |
Chiều rộng | 14 | 5 | 11 | 13 |
Chiều cao | 5 | 6 | 8 | 8 |
Diện tích một đáy | 308 | 90 | 165 | 260 |
Thể tích | 1540 | 540 | 1320 | 2080 |
Kiến thức áp dụng
+ Hình hộp chữ nhật có các kích thước bằng a, b, c thì có thể tích bằng: V = abc.
Câu 8:
Một bể nước hình hộp chữ nhật có chiều dài 2m. Lúc đầu bể không có nước. Sau khi đổ vào bể 120 thùng nước, mỗi thùng chứa 20 lít thì mực nước của bể cao 0,8m.
a) Tính chiều rộng của bể nước.
b) Người ta đổ thêm vào bể 60 thùng nước nữa thì đầy bể.
Hỏi bể cao bao nhiêu mét?
a) Thể tích nước đổ vào:
120 x 20 = 2400 (l) = 2,4 (m3)
Chiều rộng của bể nước:
2,4 : (2 x 0,8) = 1,5(m)
b) Thể tích của bể nước:
2400 + 60 x 20 = 3600 (l) = 3,6 (m3)
Chiều cao của bể nước:
3,6 : (2 x 1,5) = 1,2 (m)
Kiến thức áp dụng
+ Hình hộp chữ nhật có các kích thước bằng a, b, c thì có thể tích bằng: V = abc.
Câu 9:
Một cái thùng hình lập phương, cạnh 7dm, có chứa nước với độ sâu của nước là 4dm. Người ta thả 25 viên gạch có chiều dài 2dm, chiều rộng 1dm và chiều cao 0,5dm vào thùng. Hỏi nước trong thùng dâng lên cách miệng thùng bao nhiêu đêximet? (giả thiết toàn bộ gạch ngập trong nước và chúng hút nước không đáng kể).
Thể tích của nước trong thùng:
7 x 7 x 4 = 196 (dm3)
Thể tích của 25 viên gạch:
25 x (2 x 1 x 0,5) = 25 (dm3)
Thể tích của nước và gạch:
196 + 25 = 221 (dm3)
Mực nước sau khi thả gạch vào cao:
221 : (7 x 7) ≈ 4,51 (dm)
Nước trong thùng dâng lên cách miệng thùng là:
7 – 4,51 = 2,49 (dm).
Kiến thức áp dụng
+ Hình hộp chữ nhật có các kích thước bằng a, b, c thì có thể tích bằng: V = abc.
Câu 10:
Thùng chứa của một xe chở hàng đông lạnh có dạng như hình 90. Một số mặt là những hình chữ nhật, chẳng hạn (ABKI), (DCC'D'), ... . Quan sát hình và trả lời các câu hỏi sau:
a) Những đường thẳng nào song song với mặt phẳng (ABKI)?
b) Những đường thẳng nào vuông góc với mặt phẳng (DCC'D')?
c) Mặt phẳng (A'D'C'B') có vuông góc với mặt phẳng (DCC'D') hay không?
a) Những đường thẳng song song với mặt phẳng (ABKI) là A’B’; D’C’; DC; GH.
b) Những đường thẳng vuông góc với mặt phẳng (DCC'D') là A'D'; B'C'; DG; CH; AI; BK.
c) Ta có: A'D' ⊥ (CDD'C') mà A’D’ nằm trong mặt phẳng (A’D’C’B’) nên (A'B'C'D') ⊥ (CDD'C')
Kiến thức áp dụng
+ Một đường thẳng d song song với một mặt phẳng P nếu đường thẳng d song song với một đường thẳng a nằm trong P.
+ Một đường thẳng vuông góc với một mặt phẳng nếu đường thẳng đó vuông góc với hai đường thẳng cắt nhau trong mặt phẳng.
Câu 11:
Cho hình hộp chữ nhật ABCD.EFGH (h.91).
a) Kể tên các đường thẳng song song với mp (EFGH).
b) Đường thẳng AB song song với những mặt phẳng nào?
c) Đường thẳng AD song song với những đường thẳng nào?
a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.
b) Đường thẳng AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)
c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH
Kiến thức áp dụng
+ Một đường thẳng d song song với một mặt phẳng P nếu đường thẳng d song song với một đường thẳng a nằm trong P.
Câu 12:
Đố: Các kích thước của môt hình hộp chữ nhật là 4cm, 3cm và 2cm. Một con kiến bò theo mặt của hình hộp đó từ Q dến P (h.92).
a) Hỏi con kiến bò theo đường nào là ngắn nhất?
b) Độ dài ngắn nhất đó là bao nhiêu xentimet?
Vì con kiến phải bò theo mặt của hình hộp từ Q đến P tức phải bò trên "một mặt phẳng". Ta vẽ hình khai triển của hình hộp chữ nhật và trải phẳng như sau:
Khi đó, P sẽ có hai vị trí là P1 và P2. Và quãng đường ngắn nhất sẽ là một trong hai đoạn thẳng QP1 hoặc QP2.