IMG-LOGO
Trang chủ Lớp 9 Toán Trắc nghiệm Toán hình 9 ôn tập chương II có đáp án

Trắc nghiệm Toán hình 9 ôn tập chương II có đáp án

Trắc nghiệm Toán hình 9 ôn tập chương II có đáp án

  • 2418 lượt thi

  • 15 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Cho đường tròn (O; R), đường kính AB cố định và dây AC. Biết rằng khoảng cách từ O lần lượt đến AC và BC là 8cm và 6cm. Lấy D đối xứng với A qua C. Chọn câu sai?

Xem đáp án

VietJack

Kẻ OH, OK lần lượt vuông góc với AC và BC, ta có:

OH = 8 (cm); OK = 6 (cm) và HA = HC =AC2 ; KB = KC = BC2 (định lí đường kính dây cung)

AB là đường kính nên ACB^= 90o

Do đó tứ giác CHOK là hình chữ nhật (có ba góc vuông)

 OH = CK = 8 (cm)  BC = 16 (cm)

Tương tự ta có AC = 12 (cm)

Xét tam giác vuông OHC, ta có:

OC =OH2+HC2=82+62 = q0 (cm) (Định lý Pytago)

ABD có đường cao BC đồng thời là đường trung tuyến nên ABD cân tại B

Ta có BD = BA = 2R (cm), điểm B cố định, 2R không đổi.

Vậy D thuộc đường tròn cố định tâm B và bán kính bằng 2R. Do đó D sai

Đáp án cần chọn là: D


Câu 3:

Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Tìm vị trí điểm C và D để hình thang ABDC có chu vi bằng 14, biết AB = 4cm

Xem đáp án

Theo tính chất hai tiếp tuyến cắt nhau: AC = CM và BD = DM

Xét tứ giác ABDC có: AC // BD  ABDC là hình thang

 IO là đường trung bình của hình thang ABDC

 IO // AC // BD mà AC AB =>  IO  AB (1)

IO =  AC+BD2=CM+DM2=CD2(2)

Suy ra tam giác COD vuông tại O

CABDC = 14 => AB + 2CD = 14  =>CD =14AB2=1442  = 5cm

Lại có: CD = CM + DM = AC + BD  AC = CD – BD = 5 – BD

Mà tam giác COD vuông tại O

Áp dụng hệ thức lượng vào tam giác vuông COD ta có:

OM2 = CM . DM  22 = AC . BD  AC . BD = 4  (5 – BD). BD = 4

 5BD – BD2 = 4  BD2 – 5BD + 4 = 0  BD2 – BD – 4BD + 4 = 0

 BD (BD – 1) – 4(BD – 1) = 0  (BD – 1) (BD – 4) = 0

BD1=0BD4=0BD=1AC=4BD=4AC=1

Vậy với AC = 4cm; BD = 1cm hoặc AC = 1cm; BD = 4cm thì chu vi của hình thang ABDC bằng 14

Đáp án cần chọn là: A


Câu 7:

Tam giác đều có cạnh 8cm thì bán kính đường tròn nội tiếp tam giác là?

Xem đáp án

VietJack

Gọi O là tâm đường tròn nội tiếp tam giác đều ABC. Vậy O là giao điểm 3 đường phân giác của tam giác mà tam giác ABC đều nên O là giao điểm 3 đường trung tuyến của tam giác ABC. Vậy bán kính đường tròn (O) là OG với BG là trung tuyến của tam giác ABC

Vì tam giác ABC đều nên ta tính được:

BG = BC2CG2=8242=43 cm =>  OG =BG3=433  cm

Đáp án cần chọn là: D


Câu 9:

Cho đường tròn (O; R), AC và BD là hai đường kính. Xác định vị trí của hai đường kính AC và BD để diện tích tứ giác ABCD lớn nhất

Xem đáp án

VietJack

Vẽ AH  BD (H  BD)

Tứ giác ABCD có OA = OC = R, OB = OD = R nên là hình bình hành

Mà AC = BD = 2R do đó tứ giác ABCD là hình chữ nhật, suy ra SABCD = AB.AD

ABD có A^= 90o, AH DB  nên AB.AD = AH.DB

Vì AH  AO, DB = 2R nên SABCD  2R2 (không đổi).

Dấu “=” xảy ra  H O =>  AC  BD

Vậy khi hai đường kính AC và BD vuông góc với nhau thì diện tích tứ giác ABCD lớn nhất.

Đáp án cần chọn là: A


Câu 14:

Cho tam giác nhọn ABC. Gọi O là trung điểm của BC. Dựng đường tròn tâm O đường kính BC. Vẽ đường cao AD của tam giác ABC và các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Gọi E là giao điểm của MN với AD. Chọn câu đúng.

Xem đáp án

VietJack

AM, AN là các tiếp tuyến của đường tròn (O), gọi H là giao điểm của AO và MN

Theo tính chất hai tiếp tuyến cắt nhau ta có: AM = AN; OM = ON nên AO là đường trung trực của đoạn MN

Suy ra AO  MN

Ta có tam giác AHE đồng dạng với tam giác ADO (vì AHE^=ADO^ = 90o;  DAO^chung) nên AE. AD = AH. AO (1)

Cũng theo hệ thức lượng trong tam giác vuông AMO ta có: AH. AO = AM2. (2)

Từ (1) và (2) suy ra AE. AD = AM2

Đáp án cần chọn là: B


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương