Thứ năm, 26/12/2024
IMG-LOGO
Trang chủ Lớp 6 Toán Giải SGK Toán 6 Chương 1: Số tự nhiên - Bộ Cánh diều

Giải SGK Toán 6 Chương 1: Số tự nhiên - Bộ Cánh diều

Bài 12: Ước chung và ước chung lớn nhất - Bộ Cánh diều

  • 5585 lượt thi

  • 19 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Thầy giáo chuẩn bị 30 miếng dứa và 48 miếng dưa hấu để liên hoan lớp. Thầy giáo muốn chia số trái cây trên vào một số đĩa sao cho mỗi đĩa có số miếng mỗi loại quả như nhau.

Thầy giáo có thể chia như thế vào bao nhiêu đĩa? Số đĩa nhiều nhất mà thầy giáo có thể dùng là bao nhiêu?

Xem đáp án

Cách 1. Trước khi học bài này, ta giải quyết bài toán như sau: 

+) Ta tìm các ước của 30 và 48:

Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.

Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.

+) Các ước chung của của 30 và 48 là 1, 2, 3, 6

Vậy thầy giáo có thể chia số hoa quả thành 1 đĩa, 2 đĩa, 3 đĩa hoặc 6 đĩa. Số đĩa nhiều nhất mà thầy giáo có thể chia là 6 đĩa.

Cách 2. Sau khi học bài này, ta giải quyết được câu hỏi khởi động như sau: 

Ta đi tìm ước chung của 30 và 48 bằng cách tìm ƯCLN(30, 48)

+) Phân tích 30 và 48 ra thừa số nguyên tố: 

Thầy giáo chuẩn bị 30 miếng dứa và 48 miếng dưa hấu để liên hoan lớp. Thầy giáo muốn chia

Khi đó: 30 = 2 . 3 . 5

Thầy giáo chuẩn bị 30 miếng dứa và 48 miếng dưa hấu để liên hoan lớp. Thầy giáo muốn chia

Khi đó: 48 = 2 . 2 . 2 . 2 . 3 = 24 . 3 

+) Các thừa số nguyên tố chung của 30 và 48 là: 2 và 3 với số mũ bé nhất lần lượt là 1 và 1

Khi đó: ƯCLN(30, 48) = 21 . 31 = 6 

Mà các ước của 6 là: 1, 2, 3, 6 

Do đó các ước chung của 30 và 48 là 1, 2, 3, 6.

Vậy thầy giáo có thể chia vào 1 đĩa, 2 đĩa, 3 đĩa hoặc 6 đĩa. Số đĩa trái cây nhiều nhất mà thầy giáo có thể chia là 6 đĩa.


Câu 2:

a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần:

a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần

b) Tìm các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai.

c) Xác định số lớn nhất trong các ước chung của 30 và 48.

Xem đáp án

a) Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.

Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.

Ta điền vào bảng như sau: 

a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần

b) Các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai là 1, 2, 3, 6 được gọi là ước chung của 30 và 48.

c) Số lớn nhất trong các ước chung của 30 và 48 là 6. Số đó được gọi là ước chung lớn nhất của 30 và 48.


Câu 3:

a) Số 8 có phải là ước chung của 24 và 56 không? Vì sao?

b) Số 8 có phải là ước chung của 14 và 48 không? Vì sao?

Xem đáp án

a) Ta có: 24 và 56 đều chia hết cho 8 (vì 24 : 8 = 3; 56 : 8 = 7) nên 8 vừa là ước của 24 vừa là ước của 56. Do đó 8 là ước chung của 24 và 56. 

b) Ta có: 14 : 8 = 1 (dư 6); 48 : 8 = 6 nên 8 là ước của 48 nhưng không là ước của 14. Do đó 8 không phải là ước chung của 14 và 48.


Câu 4:

Số 7 có phải là ước chung của 14, 49, 63 không? Vì sao?

Xem đáp án

Ta có: 14 : 7 = 2; 49 : 7 = 7; 63 : 7 = 9 

Nên 7 là ước của cả ba số 14; 49 và 63.

Vậy 7 là ước chung của ba số 14; 49 và 63.


Câu 5:

Quan sát bảng sau: a) Viết tập hợp ƯC(24, 36). b) Tìm ƯCLN (24, 36)

a) Viết tập hợp ƯC(24, 36).

b) Tìm ƯCLN (24, 36).

c) Thực hiện phép chia ƯCLN (24, 36) cho các ước chung của hai số đó.

Xem đáp án

a) Quan sát bảng trên ta thấy các số 1; 2; 3; 4; 6; 12 vừa là ước của 24 vừa là ước là ước của 36 nên các số đó là ước chung của 24 và 36. 

Do đó ta viết: ƯC(24, 36) = {1; 2; 3; 4; 6; 12}. 

b) Trong các ước chung của 24 và 36, ta thấy 12 là số lớn nhất.

Vậy ƯCLN(24, 36) = 12. 

c) Thực hiện phép chia ƯCLN(24, 36) cho các ước chung của hai số đó ta được: 

12 : 1 = 12

12 : 2 = 6 

12 : 3 = 4

12 : 4 = 3 

12 : 6 = 2 

12 : 12 = 1.


Câu 6:

Tìm tất cả các số có hai chữ số là ước chung của a và b, biết rằng ƯCLN(a, b) = 80.

Xem đáp án

Vì ước chung của a và b đều là ước của ƯCLN(a, b) = 80 nên ta đi tìm các ước của 80 bằng cách lấy 80 lần lượt chia cho các số tự nhiên từ 1 đến 80, ta được các ước của 80 là: 1; 2; 4; 5; 8; 10; 16; 20; 40; 80. 

Vậy tất cả các số có hai chữ số là ước chung của a và b là: 10; 16; 20; 40; 80.


Câu 7:

Tìm ƯCLN của 126 và 162.

Xem đáp án

+ Ta phân tích các số 126 và 162 ra thừa số nguyên tố bằng cách viết "theo cột dọc" (các em cũng có thể viết bằng "rẽ nhánh") ta có:

Tìm ƯCLN của 126 và 162

Do đó: 126 = 2. 3 . 3. 7= 2 . 32 . 7 

          162 = 2 . 3. 3. 3. 3 = 2 . 34

+ Các thừa số nguyên tố chung của 126 và 162 là 2 và 3. 

+ Số mũ nhỏ nhất của 2 là 1; số mũ nhỏ nhất của 3 là 2.

Vậy ƯCLN(126, 162) = 21 . 32 = 2 . 9 = 18.


Câu 8:

Tìm ƯCLN(8, 27).

Xem đáp án

Ta có: 8 = 2 . 4 = 2 . 2. 2 = 23

27 = 3 . 9 = 3 . 3. 3 = 33 

Ta thấy hai số 8 và 27 không có thừa số nguyên tố chung do đó ƯCLN của chúng bằng 1. 

Vậy ƯCLN(8, 27) = 1. 


Câu 9:

Hai số 24 và 35 có nguyên tố cùng nhau không? Vì sao?

Xem đáp án

Để biết hai số có phải là hai số nguyên tố cùng nhau hay không, ta đi tìm ƯCLN của hai số đó, nếu ƯCLN của hai số là 1 thì hai số đó là hai số nguyên tố cùng nhau. 

Ta có: 

Hai số 24 và 35 có nguyên tố cùng nhau không? Vì sao

Do đó: 24 = 23 . 3 và 35 = 5 . 7 

Ta thấy hai số 24 và 35 không có thừa số nguyên tố chung nên ƯCLN(24, 35) = 1. 

Vậy 24 và 35 là hai số nguyên tố cùng nhau. 


Câu 10:

a) Tìm ƯCLN(4, 9).

b) Có thể rút gọn phân số 49 được nữa hay không?

Xem đáp án

a) Ta có: 4 = 2 . 2 = 22 và 9 = 3 . 3 = 32 

Do đó hai số 4 và 9 không có thừa số nguyên tố chung nên ƯCLN(4, 9) = 1. 

b) Vì ƯCLN(4, 9) = 1 nên ta KHÔNG thể rút gọn phân số 49 được nữa (vì cả tử và mẫu đều không cùng chia hết được cho số tự nhiên nào khác 1).  


Câu 11:

Số 1 có phải là ước chung của hai số tự nhiên bất kì không? Vì sao?

Xem đáp án

Số 1 là ước chung của hai số tự nhiên bất kì vì tất cả các số tự nhiên đều có ước là 1.


Câu 12:

Quan sát hai thanh sau: a) Viết tập hợp ƯC(440, 495). b) Tìm ƯCLN(440, 495)

a) Viết tập hợp ƯC(440, 495).

b) Tìm ƯCLN(440, 495). 

Xem đáp án

a) Quan sát hình vẽ ta thấy

+ Các ước của 440 là: 1; 2; 4; 5; 8; 10; 11; 20; 22; 40; 44; 55; 88; 110; 220; 440

+ Các ước của 495 là: 1; 3; 5; 9; 11; 15; 33; 45; 55; 99; 165; 495

+ Các ước chung của 440 và 495 là: 1; 5; 11; 55.

Vậy ƯC(440, 495) = {1; 5; 11; 55}.

b) Trong các ước chung của 440 và 495, ta thấy 55 là số lớn nhất. 

Vậy ƯCLN(440, 495) = 55.


Câu 13:

Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây:

a) 31, 22, 34;

b) 105, 128, 135; 

Xem đáp án

a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31. 

22 và 34 không chia hết cho 31 

Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.

+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17. 

Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.

Vậy ƯCLN( 22, 34) = 2. 

b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có: 

Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây: a) 31, 22, 34; b) 105, 128, 135

Do đó: 105 = 3 . 5 . 7

128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27

135 = 3 . 3 . 3 . 5 = 33 . 5 

+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1. 

+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1. 

+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5. 

Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1. 

Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15

Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15. 


Câu 14:

Tìm ƯCLN(126, 150). Từ đó hãy tìm tất cả các ước chung của 126 và 150.

Xem đáp án

Tìm ƯCLN(126, 150). Từ đó hãy tìm tất cả các ước chung của 126 và 150

Do đó: 126 = 2 . 3 . 3 . 7 = 2 . 32 . 7

150 = 2 . 3 . 5 . 5 = 2 . 3 . 52

Các thừa số nguyên tố chung của 126 và 150 là 2 và 3

Số 2 có số mũ nhỏ nhất là 1; số 3 có số mũ nhỏ nhất là 1.

Do đó: ƯCLN(126, 150) = 21 . 31 = 2 . 3 = 6 

Lại có 6 có các ước là 1; 2; 3; 6

Ước chung của 126 và 150 là ước của ƯCLN(126, 150) là 1; 2; 3; 6

Hay ƯC(126, 150) = {1; 2; 3; 6} 

Vậy ƯCLN(126, 150) = 6; ƯC(126, 150) = {1; 2; 3; 6}. 


Câu 15:

Rút gọn các phân số sau về phân số tối giản:  6072;7095;150360

Xem đáp án

Các phân số được gọi là tối giản khi phân số đó có tử và mẫu là hai số nguyên tố cùng nhau. Vậy để rút gọn các phân số (chưa phải là phân số tối giản) thì ta đi tìm ƯCLN của tử số và mẫu số, rồi lấy cả tử và mẫu chia cho ƯCLN của cả hai thì ta được phân số tối giản. 

+ Rút gọn phân số 6072

Ta có: 

Rút gọn các phân số sau về phân số tối giản: 60/72; 70/95; 150/360;

Do đó: 60 = 22 . 3 . 5 và 72 = 23 . 32

Các thừa số nguyên tố chung là 2 và 3, số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1

Suy ra ƯCLN(60, 72) = 22 . 31 = 4 . 3 = 12 

Vậy 6072=60:1272:12=56

+ Rút gọn phân số 7095

Ta có: 70 = 7 . 10 = 7 . (2 . 5) = 2 . 5 . 7

95 = 5 . 19 

Thừa số nguyên tố chung là 5, có số mũ nhỏ nhất là 1

Khi đó: ƯCLN(70, 95) = 51 = 5

Vậy 7095=70:595:5=1419

+ Rút gọn phân số 150360

Rút gọn các phân số sau về phân số tối giản: 60/72; 70/95; 150/360;

Do đó: 150 = 2 . 3 . 52

360 = 2 . 5 . 2 . 2 . 3 . 3 = 23 . 32 . 5

Các thừa số nguyên tố chung là 2, 3 và 5

Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 1, số mũ nhỏ nhất của 5 là 1

Nên ƯCLN(150, 360) = 2 . 3. 5 = 30 

Vậy 150360=150:30360:30=512


Câu 16:

Phân số 49 bằng các phân số nào trong các phân số sau: 48108;80180;60130;135270

Xem đáp án

Ta thấy các phân số 48108;80180;60130;135270 chưa là phân số tối giản, mà phân số 49 là phân số tối giản (vì 4 và 9 là hai số nguyên tố cùng nhau) nên ta đi rút gọn các phân số 48108;80180;60130;135270 rồi so sánh. 

+ Ta có: 48 = 3 . 16 = 3 . 24; 108 = 4 . 27 = 22 . 33 

Các thừa số nguyên tố chung là 2, 3 và số mũ nhỏ nhất của 2 là 2; số mũ nhỏ nhất của 3 là 1.  

Nên ƯCLN(48, 108) = 22 . 3 = 12.

Do đó: 48108=48:12108:12=49

+ Ta có: 80 = 8 . 10 = 23 . (2 . 5) = 24 . 5

180 = 10 . 18 = (2 . 5) .(2 . 3 . 3) = 22 . 32 . 5 

Các thừa số nguyên tố chung là 2 và 5; Số 2 có số mũ nhỏ nhất là 2, số 5 có số mũ nhỏ nhất là 1.

Nên ƯCLN(80, 180) = 22 . 5 = 20

Do đó: 80180=80:20180:20=49

+ Ta có: 60 = 6 . 10 = (2. 3) . (2 . 5) = 22 . 3 . 5

130 = 10 . 13 = 2 . 5 . 13 

Các thừa số nguyên tố chung là 2 và 5, số 2 và số 5 đều có số mũ nhỏ nhất là 1.

Nên ƯCLN(60, 130) = 2 . 5 = 10 

Do đó: 60130=60:10130:10=61349

+ Ta có: 135 = 5 . 27 = 5 . 33; 270 = 10 . 27 = (2 . 5) .33 = 2 . 33 . 5

Các thừa số nguyên tố chung là 3 và 5. Số 3 có số mũ nhỏ nhất là 3 và 5 có số mũ nhỏ nhất là 1.

Nên ƯCLN(135, 270) = 33. 5 = 135 

Do đó: 135270=135:135270:135=1249

Vậy trong các phân số đã cho, các phân số bằng 49 là 48108;80180


Câu 17:

Một nhóm gồm 24 bạn nữ và 30 bạn nam tham gia một số trò chơi. Có thể chia các bạn thành nhiều nhất bao nhiêu đội chơi sao cho số bạn nam cũng như số bạn nữ được chia đều vào các đội?

Xem đáp án

Giả sử a là số đội chơi được chia. (a ∈ N*)

 Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30. 

Ta có: 24 = 3 . 8 = 3 . 23 ; 30 = 3 . 10 = 3 . 2 . 5 

(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)

Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6. 

Vậy có thể chia các bạn nhiều nhất thành 6 đội.


Câu 18:

Một khu đất có dạng hình chữ nhật với chiều dài 48m, chiều rộng 42m. Người ta muốn chia khu đất ấy thành những mảnh hình vuông bằng nhau (với độ dài cạnh đo theo đơn vị mét là số tự nhiên) để trồng các loại rau. Có thể chia được bằng bao nhiêu cách? Với cách chia nào thì cạnh của mảnh đất hình vuông là lớn nhất và bằng bao nhiêu?

Xem đáp án

Gọi: a là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau 

        b (m) là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất a,b ∈ N*

Theo yêu cầu bài ra thì khi đó: 

+ a là số các ước chung của 48 và 42

+ b là ước chung lớn nhất của 48 và 42

Ta có: 42 = 2 . 21 = 2 . 3 . 7 

48 = 16 . 3 = 24 . 3

Do đó: ƯCLN(42, 48) = 2 . 3 = 6 hay b = 6 m 

Mà Ư(6) = {1; 2; 3; 6) Nên ƯC(42, 48) = {1; 2; 3; 6}

Do đó có 4 ước chung của 42 và 48 hay a = 4.

Vậy:

+ Số cách chia thành những mảnh hình vuông bằng nhau là 4 cách.

+ Với cách chia có độ dài cạnh là 6m thì cạnh của mảnh đất hình vuông là lớn nhất. 


Câu 19:

Áp dụng thuật toán Ơ-clit để tìm ƯCLN của:

a) 126 và 162;

b) 2 268 và 1 260.

Xem đáp án

a)

Áp dụng thuật toán Ơ-clit để tìm ƯCLN của: a) 126 và 162; b) 2 268 và 1 260

Bước 1: Chia số 162 cho 126 

162 : 126 = 1 (dư 36) (1)

Bước 2: 

+) Phép chia (1) còn dư nên lấy số chia 126 chia cho số dư 36

126 : 36 = 3 (dư 18) (2)

+) Phép chia (2) còn dư nên lấy số chia 36 chia cho số dư 18

36 : 18 = 2 (dư 0) (3)

Phép chia (3) có số dư bằng 0, ta dừng lại.

Bước 3: Số chia cuối cùng là ƯCLN phải tìm

Vậy ƯCLN(162, 126) = 18.

b) Thực hiện tương tự ta có: 

Áp dụng thuật toán Ơ-clit để tìm ƯCLN của: a) 126 và 162; b) 2 268 và 1 260

Bước 1: Chia số 2 268 cho 1 260 

2 268 : 1 260 = 1 (dư 1 008) (1)

Bước 2: 

+) Phép chia (1) còn dư nên lấy số chia 1 260 chia cho số dư 1 008

1 260 : 1 008 = 1 (dư 252) (2)

+) Phép chia (2) còn dư nên lấy số chia 1 008 chia cho số dư 252

1 008 : 252 = 4 (dư 0) (3)

Phép chia (3) có số dư bằng 0, ta dừng lại.

Bước 3: Số chia cuối cùng là ƯCLN phải tìm

Vậy ƯCLN(2 268, 1 260) = 252.


Bắt đầu thi ngay