Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố - Bộ Chân trời sáng tạo
-
6513 lượt thi
-
13 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Những số tự nhiên nào lớn hơn 1 và có ít ước nhất?
Những số tự nhiên lớn hơn 1 và có ít ước nhất là 2; 3; 5; 7; 11; 13; …
Sau bài học này ta sẽ biết các số trên được gọi là số nguyên tố.
Câu 2:
a) Tìm tất cả các ước của các số từ 1 đến 10.
b) Sắp xếp các số từ 1 đến 10 thành ba nhóm:
- Nhóm 1 bao gồm các số chỉ có một ước.
- Nhóm 2 bao gồm các số chỉ có hai ước khác nhau.
- Nhóm 3 bao gồm các số có nhiều hơn hai ước khác nhau.
a) Ư(1) = {1};
Ư(2) = {1; 2};
Ư(3) = {1; 3};
Ư(4) = {1; 2; 4};
Ư(5) = {1; 5};
Ư(6) = {1; 2; 3; 6};
Ư(7) = {1; 7};
Ư(8) = {1; 2; 4; 8};
Ư(9) = {1; 3; 9};
Ư(10) = {1; 2; 5; 10}.
b)
- Nhóm 1 chỉ có số 1.
- Nhóm 2 bao gồm 2; 3; 5; 7.
- Nhóm 3 bao gồm 4; 6; 8; 9; 10.
Câu 3:
a) Trong các số 11; 12; 25, số nào là số nguyên tố, số nào là hợp số? Vì sao?
b) Lan nói rằng: “Nếu một số tự nhiên không là số nguyên tố thì nó phải là hợp số”. Em có đồng ý với Lan không? Vì sao?
a) Ta có: Ư(11) = {1; 11}; Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(25) = {1; 5; 25}.
Số nguyên tố là 11 vì 11 lớn hơn 1 và chỉ có hai ước là 1 và chính nó.
Hợp số là: 12; 25 vì 12 có nhiều hơn 2 ước, còn 25 có 3 ước.
b) Không. Vì còn có số 0 và số 1 không phải là số nguyên tố và cũng không là hợp số.
Câu 4:
Phân tích số 60 ra thừa số nguyên tố theo cột dọc.
Phân tích số 60 ra thừa số nguyên tố theo cột dọc, ta được:
Vậy 60 = 2.2.3.5 = 22.31.51.
Câu 5:
Tìm các số tự nhiên lớn hơn 1 để thay thế dấu ? trong ô vuông ở mỗi sơ đồ cây dưới đây, rồi viết gọn dạng phân tích ra thừa số nguyên tố của mỗi số 18; 42; 280 bằng cách dùng lũy thừa.
a)
b)
c)
a)
18 = 2.32.
b)
42 = 2.3.7
c)
280 = 23.5.7
Câu 6:
Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
a) 213; b) 245;
c) 3 737; d) 67.
a) Vì 213 có ước là 3 khác 1 và chính nó nên 213 có nhiều hơn 2 ước. Do đó 213 là hợp số.
b) Vì 245 có ước là 5 khác 1 và chính nó nên 245 có nhiều hơn 2 ước. Do đó 245 là hợp số.
c) Vì 3 737 có ước là 37 khác 1 và chính nó nên 3737 có nhiều hơn 2 ước. Do đó 3737 là hợp số.
d) Vì 67 chỉ có đúng hai ước là 1 và chính nó nên 67 là số nguyên tố.
Câu 7:
Lớp của bạn Hoàng có 37 học sinh. Trong một lần thi đồng diễn thể dục, các bạn lớp Hoàng muốn xếp thành các hàng có cùng số bạn để được một khối hình chữ nhất có ít nhất là hai hàng. Hỏi các bạn có thực hiện được không? Em hãy giải thích.
Ta nhận thấy 37 chỉ có hai ước là 1 và chính nó nên 37 là số nguyên tố mà cần ít nhất hai hàng nên không thể xếp các học sinh trong lớp thành các hàng có cùng số bạn.
Câu 8:
Hãy cho ví dụ về:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố.
a) Hai số tự nhiên liên tiếp đều là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố là 3; 5; 7.
Câu 9:
Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.
a) Ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố luôn là một số lẻ” là SAI.
b) Như ý a ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố có thể là một số chẵn” là ĐÚNG.
c) Tích của hai số nguyên tố a, b sẽ có các ước là 1, a, b và ab. Do đó tích của chúng có nhiều hơn hai ước nên không là một số nguyên tố.
Vì vậy khẳng định “Tích của hai số nguyên tố có thể là một số nguyên tố” là SAI.
Câu 10:
Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
a) 80; b) 120;
c) 225; d) 400.
a)
80 = 2.2.2.2.5 = 24.5.
80 có thể chia hết cho các số nguyên tố là 2 và 5.
b)
120 = 2.2.2.3.5 = 23.3.5
120 có thể chia hết cho các số nguyên tố là 2, 3, 5.
c)
225 = 3.3.5.5 = 32.52.
225 có thể chia hết cho các số nguyên tố là 3 và 5.
d)
400 = 2.2.2.2.5.5 = 24.52.
400 có thể chia hết cho các số nguyên tố là 2 và 5.
Câu 11:
Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
a) 30; b) 225;
c) 210; d) 242.
a)
30 = 2 . 3 . 5.
Khi đó ta tìm được các ước của 30 là 1; 2; 3; 5; 6; 10; 15; 30
Vậy ta viết Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.
b)
225 = 3.3.5.5 = 32.52.
Khi đó ta tìm được các ước của 225 là: 1; 3; 5; 9; 15; 25; 45; 75; 225
Khi đó ta viết Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225}.
c)
210 = 2.3.5.7.
Khi đó ta tìm được các ước của 210 là: 1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210.
Vậy
Ư(210) = {1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210}.
d)
242 = 2.11.11 = 2.112.
Ư(242) = {1; 2; 11; 22; 121; 242}.
Câu 12:
Cho số a = 23.32.7 Trong các số 4, 7, 9, 21, 24, 34, 49 số nào là ước của a?
Phân tích các số trên ra thừa số nguyên tố ta được:
4 = 22, 7 = 7, 9 = 32, 21 = 3.7; 24 = 23.3; 34 = 2.17; 49 = 72.
Số nào có chung thừa số nguyên tố và thừa số đó có số mũ nhỏ hơn các thừa số nguyên tố trong phân tích của a thì sẽ là ước của a. Do đó ta thấy các ước của a là: 4; 7; 9; 21; 24.
Câu 13:
Bình dùng một khay hình vuông cạnh 60 cm để xếp bánh chưng. Mỗi chiếc bánh chưng hình vuông có cạnh 15 cm. Bình có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay này không? Giải thích.
Vì 60 chia hết cho 15 hay 15 là ước của 60 nên Bình hoàn toàn có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay.