Dạng 5. Sử dụng bất đẳng thức Cô-si .
-
2203 lượt thi
-
4 câu hỏi
-
45 phút
Danh sách câu hỏi
Câu 1:
Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy . Vẽ các đường tròn có đường kính MA và MB . Xác định vị trí của điểm M để tổng diện tích của hai hình tròn có giá trị nhỏ nhất .
Đặt MA =x , MB = y
Ta có : x + y =AB (0 < x,y < AB)
Gọi S và S’ theo thứ tự là diện tích của hai hình tròn có đường kính là MA và MB .
Ta có: S +S’ = = .
Ta có bất đẳng thức : nên :
S +S’ =
Dấu đẳng thức xảy ra khi và chỉ khi x = y
Do đó min (S+S’) = . Khi đó M là trung điểm của AB.
Câu 2:
Cho điểm M nằm trên đoạn thẳng AB .Vẽ về một phía của AB các tia Ax và By vuông góc với AB . Qua M có hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D . Xác định vị trí của các điểm C,D sao cho tam giác MCD có diện tích nhỏ nhất .
Ta có : SMCD = MC.MD
Đặt MA = a , MB = b
MC = , MD =
SMCD =
Do a,b là hằng số nên SMCD nhỏ nhất 2sina.cosa lớn nhất .
Theo bất đẳng thức 2xy x2 +y2 ta có :
2sina.cosa sin2a +cos2a = 1 nên SMCD ≥ ab
SMCD = ab sina = cosa sina = sin(900-a) a = 900-a a = 450
Tam giác AMC và tam giác BMD vuông cân.
Vậy min SMCD = ab. Khi đó các điểm C,D được xác định trên tia Ax ; By sao cho AC = AM , BD = BMCâu 3:
Cho tam giác ABC , điểm M di động trên cạnh BC . Qua M kẻ các đường thẳng song song với AC và với AB , chúng cắt AB và AC theo thứ tự ở D và E.Xác định vị trí của điểm M sao cho hình bình hành ADME có diện tích lớn nhất.
SADME lớn nhất lớn nhất
Kẻ BK vuông góc AC cắt MD ở H.
SADME = MD . HK
SABC = AC . BK
Đặt MB = x , MC = y ,
MD//AC ta có :
Theo bất đẳng thức
Dấu đẳng thức xảy ra khi x = y
Vậy max SADME = SABC khi đó M là trung điểm của BC.
Câu 4:
Cho tam giác ABC vuông cân có cạnh huyền BC = a . Gọi D là trung điểm của AB. Điểm E di chuyển trên cạnh AC. Gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ D, E đến BC . Tính diện tích lớn nhất của hình thang DEKH . Khi đó hình thang trở thành hình gì ?
Ta có :
2SDEKH = (DH +EK).HK = ( BH +KC ) .HK
Mà (BH + KC) +HK =BC = a không đổi
Nên (BH + KC) .HK lớn nhất BH + KC) = HK =
Do đó :max SDEKH =
Khi đó đường cao HK = suy ra :
KC = BC -BH –HK = a -
Do đó DH = HB = , EK = KC = .
Hình thang DEKH là hình chữ nhật , E là trung điểm của AC.