IMG-LOGO

Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

  • 3523 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 2:

Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O)

Xem đáp án

Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)


Câu 3:

Vì sao tâm O cách đều các cạnh của lục giác đều ? Gọi khoảng cách này là r.

Xem đáp án

Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)


Câu 4:

Vẽ đường tròn tâm O, bán kính 2cm.

Xem đáp án

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Chọn điểm O là tâm, mở compa có độ dài 2cm vẽ đường tròn tâm O, bán kính 2cm.


Câu 5:

Vẽ hình vuông nội tiếp đường tròn (O) ở câu a).

Xem đáp án

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O; 2cm).


Câu 6:

Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).

Xem đáp án

 

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ OH ⊥ BC.

⇒ OH là khoảng cách từ từ tâm O đến BC

Vì AB = BC = CD = DA ( ABCD là hình vuông) nên khoảng cách từ tâm O đến AB, BC, CD, DA bằng nhau ( định lý lien hệ giữa dây cung và khoảng cách từ tâm đến dây)

⇒ O là tâm đường tròn nội tiếp hình vuông ABCD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

Tam giác vuông OBC có OH là đường trung tuyến ⇒ Giải bài tập Toán 9 | Giải Toán lớp 9

Xét tam giác vuông OHB có: r2 + r2 = OB2 = 22 ⇒ 2r2 = 4 ⇒ r2 = 2 ⇒ r = √2(cm)

Vẽ đường tròn (O; OH). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh.

 


Câu 7:

Vẽ tam giác đều ABC cạnh a = 3cm.

Xem đáp án

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước thẳng và compa).

+ Dựng đoạn thẳng AB = 3cm .

+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.

Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.


Câu 8:

Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.

Xem đáp án

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

* Vẽ đường tròn:

Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực.

Dựng đường trung trực của đoạn thẳng BC và CA.

Hai đường trung trực cắt nhau tại O.

Vẽ đường tròn tâm O, bán kính OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.

* Tính bán kính đường tròn.

+ Gọi A’ là trung điểm BC ⇒ A’C = BC/2 = a/2.

và AA’ ⊥ BC

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do tam giác ABC là tam giác đều nên 3 đường trung trực đồng thời là ba đường trung tuyến

=> Giao điểm ba đường trung trực cũng là giao điểm ba đường trung tuyến

Suy ra O là trọng tâm tam giác ABC.

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy R = √3 (cm).


Câu 9:

Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).

Xem đáp án

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ các tiếp tuyến với đường tròn (O; R) tại A, B, C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ΔIJK là tam giác đều ngoại tiếp (O; R).


Câu 10:

Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.

Xem đáp án

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ lục giác đều nội tiếp (O; R) :

+ Lấy điểm A trên (O ; R).

+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R

+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R

+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R

+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R

ABCDEF là lục giác đều cần vẽ.

* Tính cạnh: AB = BC = CD = DE = EF = FA = R.


Câu 11:

Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.

Xem đáp án

 

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ hình vuông :

+ Vẽ đường kính AC của đường tròn tâm O.

+ Vẽ đường kính BD ⊥ AC

Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.

Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).

* Tính cạnh :

ΔAOB vuông tại O

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9


Câu 12:

Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.

 

Xem đáp án

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ tam giác đều:

Chia đường tròn thành 6 cung bằng nhau như phần a).

Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.

* Tính cạnh tam giác :

Gọi cạnh ΔABC đều là a.

Gọi H là trung điểm BC

⇒ HB = a/2

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà OA = R ⇒ a = R√3.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm