Thứ sáu, 02/05/2025
IMG-LOGO

Bài 7: Toán 8 Hình bình hành

  • 7168 lượt thi

  • 29 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Các tứ giác ABCD, EFGH và hình vẽ bên dưới có phải là hình bình hành hay không?

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ABCD là hình bình hành vì có cạnh đối AD // BC và AD = BC bằng 3 cạnh ô vuông.

Tứ giác EFGH là hình bình hành vì có các cạnh đối bằng nhau.

EH = FG, EF = HG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông


Câu 2:

Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng: DE = BF

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AB = CD (tính chất hình bình hành)

EB = 1/2 AB (gt)

FD = 1/2 CD (gt)

Suy ra: EB = FD (1)

Mà AB // CD (gt)

⇒ BE // FD (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)


Câu 3:

Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác của góc C cắt AB ở N. Chứng minh rằng AMCN là hình bình hành.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: A = C (tính chất hình bình hành)

A2 = 1/2 A ( Vì AM là tia phân giác của (BAD) )

C2 = 1/2 C ( Vì CN là tia phân giác của (BCD) )

Suy ra: A2 = C2

Do ABCD là hình bình hành nên AB // CD (gt)

Hay AN // CM (1)

Mà N1 = C2(so le trong)

Suy ra: A2N1

⇒ AM // CN (vì có cặp góc ở vị trí đồng vị bằng nhau) (2)

Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.


Câu 4:

Hình bên cho ABCD là hình bình hành. Chứng minh rằng AECF là hình bình hành.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là'giao điểm của AC và BD, ta có:

OA = OC (tính chất hình bình hành) (1)

Xét hai tam giác vuông AEO và CFO, ta có:

(AEO) = (CFO) = 900

OA = OC (chứng minh trên)

(AOE) = (COF) (đối đỉnh)

Do đó AEO = CFO (cạnh huyền, góc nhọn)

⇒ OE = OF (2)

Từ (1) và (2) suy ra tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).


Câu 5:

Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?

Xem đáp án

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối đường chéo AC.

Trong ABC ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của ABC

⇒EF//AC và EF = 1/2 AC

(tính chất đường trung hình tam giác) (1)

Trong ADC ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của ADC

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).


Câu 6:

Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB, Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chứng minh rằng DE = EF = FB

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AB = CD (tính chất hình bình hành)

AK = 1/2 AB (gt)

CI = 1/2 CD (gt)

Suy ra: AK = CI (1)

Mặt khác: AB // CD (gt)

⇒ AK // CI (2)

Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

⇒ AI // CK

Trong ABE, ta có:

K là trung điểm của AB (gt)

AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)

Trong DCF, ta có:

I là trung điểm của DC (gt)

AI // CK hay IE // CF nên DE = EF (tính chất đường trung bình tam giác)

Suy ra: DE = EF = FB


Câu 7:

Tính các góc của hình bình hành ABCD biết: A = 1100

Xem đáp án

Tứ giác ABCD là hình bình hành.

⇒ C = A = 1100 (tính chất hình bình hành)

A + B = 1800 (2 góc trong cùng phía bù nhau)

⇒ B = 1800 – 1100 = 700

      D = B = 700 (tính chất hình bình hành)


Câu 8:

Tính các góc của hình bình hành ABCD biết: A - B = 200

Xem đáp án

Tứ giác ABCD là hình bình hành.

A + B = 1800 (2 góc trong cùng phía bù nhau)

       A - B = 200 (gt)

Suy ra: 2A = 2000 ⇒ A = 1000

C = A = 1000(tính chất hình bình hành)

B = A – 200 = 1000 – 200 = 800

D = B = 800 (tính chất hình bình hành)


Câu 9:

Trong các tứ giác ở hình dưới đây, hình nào là hình bình hành.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Tứ giác ABCD là hình bình hành vì AB // CD và AB = CD.

* Tứ giác IKMN có: I + K + N + M = 3600

Suy ra: N = 3600 - (K + I + M) = 1100

Ta có I = M = 700 và K = N = 1100

Suy ra IKMN là hình bình hành (tứ giác có các góc đối bằng nhau).

* Tứ giác EFGH không là hình bình hành vì có hai đường chéo không cắt nhau tại trung điểm mỗi đường.


Câu 10:

Chu vi hình bình hành ABCD bằng l0cm, chu vi tam giác ABD bằng 9cm. Tính độ dài BD.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Chu vì hình bình hành ABCD bằng 10cm nên (AB + AD).2 = 10(cm)

⇒ AB + AD = 10 : 2 = 5(cm)

Chu vi của ABD bằng:

AB + AD + BD = 9(cm)

⇒ BD = 9 - (AB + AD) = 9 - 5 = 4(cm)


Câu 11:

Hình bên dưới, cho ABCD là hình bình hành. Chứng minh rằng AE //CF.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và BD, ta có:

OB = OE + EB và OD = OF+ FD (1)

Lại có: EB = FD (giả thiết) (2)

OB = OD ( tính chất hình bình hành). (3)

Từ (1), (2),(3) suy ra: OE = OF

Suy ra tứ giác AECF là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AE // CF.


Câu 12:

Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: EMNF là hình bình hành

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có:

AE = 1/2 AB; CF = 1/2. CD ( vì E và F lần lượt là trung điểm của AB, CD).

Và AB = CD (tính chất hình bình hành)

Suy ra: AE = CF

+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF

Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành

⇒ AF //CE hay EN // FM (1)

Xét tứ giác BFDE ta có:

AB // CD (gt) hay BE // DF

BE = 1/2 AB (gt)

DF = 1/2 CD (gt)

AB = CD (tính chất hình bình hành)

Suy ra: BE = DF

Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)

Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành)


Câu 13:

Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: Các đường thẳng AC, EF, MN đồng quy.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và EF

Tứ giác AECF là hình bình hành ⇒ OE = OF

Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Suy ra: MN đi qua trung điểm O của EF.

Vậy AC, EF, MN đồng quy tại O.


Câu 14:

Hình dưới cho ABCD là hình bình hành. Chứng minh rằng: EGFH là hình bình hành.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có: AH + HD = AD

CG + GB = CB

Mà AD = CB ( vì ABCD là hình bình hành).

DH = GB ( giả thiết)

Suy ra: AH = CG.

Xét AEH và CFG:

AE = CF (gt)

A = C (tính chất hình bình hành)

AH = CG ( chứng minh trên).

Do đó: AEH = CFG (c.g.c)

⇒ EH = FG

Xét BEG và DFH, ta có:

BG = DH (gt)

B = D (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )

Do đó: BEG = DFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)


Câu 15:

Hình dưới cho ABCD là hình bình hành. Chứng minh rằng: Các đường thẳng AC, BD, EF, GH đồng quy.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và EF

Xét tứ giác AECF, ta có: AB // CD (gt) hay AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm AC nên O cũng là trung điểm của BD.

Tứ giác EGFH là hình bình hành có O là trung điểm EF nên O cũng là trung điểm của GH.

Vậy AC, BD, EF, GH đồng quy tại O.


Câu 16:

Cho hình hình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA', BB', DD' là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA' = BB' + DD'

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO' ⊥ xy

Ta có: BB' ⊥ xy (gt)

DD' ⊥ xy (gt)

Suy ra: BB // OO' // DD'

Tứ giác BB'D'D là hình thang .

OB = OD (t/chất hình bình hành)

Nên O'B' = O'D'

Do đó OO' là đường trung bình của hình thang BB'D'D

⇒ OO' = (BB' + DD') / 2 (tính chất đường trung hình hình thang) (1)

AA' ⊥ xy (gt)

OO' ⊥ xy (theo cách vẽ)

Suy ra: AA' // OO'

Trong ACA' tacó: OA = OC (tính chất hình bình hành)

OO' // AA' nên OO' là đường trung bình của ACA'

⇒ OO' = 1/2 AA' (tính chất đường trung bình của tam giác)

⇒ AA' = 2OO' (2)

Tử (1) và (2) suy ra: AA' = BB' + DD'


Câu 17:

Cho hình bình hành ABCD và đường thẳng xy không có điểm chung với hình bình hành. Gọi AA’; BB’; CC’, DD’ là các đường vuông góc kẻ từ A, B, C, D đến đường thẳng xy. Tìm mối liên hệ độ dài giữa AA', BB', CC', DD'

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và BD

⇒ OA = OC, OB = OD (tính chất hình bình hành)

Kẻ OO' ⊥ xy

AA' ⊥ xy (gt)

CC' ⊥ xy (gt)

Suy ra: AA' // OO' // CC'

Tứ giác ACC'A' là hình thang có:

OA = OC (chứng minh trên)

OO' // AA' nên OO' là đường trung bình của hình thang ACC'A'.

⇒ OO' = (AA' + CC') / 2 (t/chất đường trung bình của hình thang) (1)

BB' ⊥ xy

DD' ⊥ xy (gt)

OO' ⊥ xy (gt)

Suy ra: BB'// OO' // DD'

Tứ giác BDD'B' là hình thang có:

OB = OD (Chứng minh trên)

OO' // BB' nên OO' là đường trung bình của hình thang BDD'B'.

⇒ OO' = (BB' + DD') / 2 (tính chất đường trung bình của hình thang) (2)

Từ (1) và (2) => AA' + CC' = BB + DD'


Câu 18:

Cho hình bình hành ABCD có A = α > 90o. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE.  Tính góc (EAF)

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(BAD) + (BAE) + (EAF) + (FAD) = 3600

⇒ (EAF) = 3600 – ((BAD) + (BAE) + (FAD) )

Mà (BAD) = α2 (gt)

(BAE) = 600 (ΔBAE đều)

(FAD) = 600 (ΔFAD đều)

Nên (EAF) = 3600 – (α2 + 600 + 600) = 2400 – α


Câu 19:

Cho hình bình hành ABCD có A = α > 900. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Chứng minh rằng tam giác CEF là tam giác đều.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

(BAD) + ∠(ADC) = 1800 (hai góc trong cùng phía bù nhau)

⇒ (ADC) = 1800 - (BAD) = 1800 – α

(CDF) = (ADC) + (ADF) = 1800 - α2+600=2400-α

Suy ra: (CDF) = (EAF)

Xét AEF và DCF: AF = DF ( vì ADF đều)

AE = DC (vì cùng bằng AB)

(CDF) = (EAF) (chứng minh trên)

Do đó: AEF = DCF (c.g.c) ⇒ EF = CF (1)

(CBE) = (ABC) + 600=1800-α+600=2400-α

Xét ΔBCE và ΔDFC: BE = CD ( vì cùng bằng AB)

(CBE) = (CDF) = 2400-α

BC = DF (vì cùng bằng AD)

Do đó BCE = DFC (c.g.c) ⇒ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy  ECF đều.


Câu 20:

Cho tam giác ABC. Ở phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng: IA = BC

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(BAD) + (BAC) + (DAE) + (EAC) = 3600

Lại có: (BAD) = 900(EAC) = 900

Suy ra: (BAC) + (DAE) = 1800 (1)

AE // DI (gt)

⇒ (ADI) + (DAE) = 1800 (2 góc trong cùng phía)

Từ (1) và (2) suy ra: (BAC) = (ADI)

Xét ABC và DAI có:

AB = AD ( vì tam giác ABD vuông cân).

AC = DI ( = AE)

(BAC) = (ADI) ( chứng minh trên)

Suy ra: ABC = DAI (c.g.c) ⇒ IA = BC


Câu 21:

Cho tam giác ABC. Ở phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng: IA ⊥ BC

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

ABC = DAI (chứng minh trên) ⇒ (ABC) = A1 (3)

Gọi giao điểm IA và BC là H.

Ta có: A1(BAD) + A2= 1800 (kề bù)

Mà (BAD) = 900 (gt) ⇒ A1A2900 (4)

Từ (3) và (4) suy ra: (ABC)+ A2900

Trong AHB ta có: (AHB) + (ABC)+ A2= 1800

Suy ra (AHB) = 900 ⇒ AH ⊥ BC hay IA ⊥ BC


Câu 22:

Dựng hình bình hành ABCD biết: AB = 2cm, AD = 3cm, A = 1100

Xem đáp án

Cách dựng 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- Dựng ΔABD có AB = 2cm, ∠A = 110o, AD = 3cm

- Dựng tia Bx //AD

- Dựng tia Dy // AB và Dy cắt Bx tại C

Ta có hình bình hành ABCD cần dựng

Chứng minh

AB //CD, AD // BC nên tứ giác ABCD là hình bình hành.

Ta lại có: AB = 2cm, A = 1100, AD = 3cm.

Bài toán có một nghiệm hình.


Câu 23:

Dựng hình bình hành ABCD biết: AC = 4cm, BD = 5cm, (BOC) = 500

Xem đáp án

Cách dựng

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- Dựng OBC có OC = 2cm, OB = 2,5 cm, (BOC) = 500

- Trên tia đối tia OC lấy điểm A sao cho OA = OC = 2cm

- Trên tia đối tia OB lấy điểm D sao cho OD = OB =2,5cm

Nối AB, BC, CD, AD ta có hình bình hành ABCD cần dựng

Chứng minh

Tứ giác ABCD có OA = OC, OB = OD nên nó là hình bình hành vì có 2 đường chéo cắt nhau tại trung điểm mỗi đường.

Có AC = 4cm , BD = 5cm, (BOC) = 500

Bài toán có một nghiệm hình


Câu 24:

Cho ba điểm A, B, C trên giấy kẻ ô vuông ở hình bên. Hãy vẽ điểm thứ tư M sao cho A, B,C, M là 4 đỉnh của một hình bình hành.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

- Nếu hình bình hành nhận AC làm đường chéo vì AB là đường chéo hình vuông có 2 ô vuông nên CM1 là đường chéo hình vuông cạnh 2 ô vuông và A, M1 nằm trên một nửa mặt phẳng bờ BC ta có hình bình hành ABCM1

- Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông, điểm B cách điểm M2 là ba ô vuông và trên một nửa mặt phẳng bờ AB ta có hình bình hành ABM2C

- Nếu hình bình hành nhận AB làm đường chéo thì điểm M3 cách điểm B ba ô vuông, M3 và A nằm trên cùng một nửa mặt phẳng bờ BC ta có hình bình hành ACBM3


Câu 25:

Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng đường phân giác AD của góc BAC.

- Qua D dựng đường thẳng song song AB cắt AC tại F.

- Qua F dựng đường thẳng song song với BC cắt AB tại E.

Ta có điểm E, F cần dựng.

Chứng minh:

DF // AB

A1D1(so le trong)

Lại có: A1A2 ( vì AD là tia phân giác của góc BAC).

Suy ra: D1A2

AFD cân tại F ⇒ AF = DF (l)

DF // AB hay DF // BE

EF // BC hay EF // BD

Tứ giác BDFE là hình bình hành ⇒ BE = DF (2)

Từ (1) và (2) suy ra: AF = BE.


Câu 27:

Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng: AE song song CF

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: OB = OD (tính chất hình bình hành)

OE = 1/2 OD (gt)

OF = 1/2 OB (gt)

Suy ra: OE = OF

Xét tứ giác AECF, ta có:

OE = OF (chứng minh trên)

OA = OC (vì ABCD là hình bình hành)

Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE // CF


Câu 28:

Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng: DK = 1/2 KC

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ OM // AK

Trong CAK ta có:

OA = OC ( chứng minh trên)

OM // AK ( theo cách vẽ)

⇒ CM = MK (tính chất đường trung bình của tam giác) (1)

Trong DMO ta có:

DE = EO (gt)

EK // OM (vì AK // OM)

⇒ DK = KM (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: DK = KM = MC ⇒ DK = 1/2 KC


Câu 29:

Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.

Xem đáp án

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Xét tứ giác AECF:

AB // CD (gt)

⇒ AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)

⇒ AC và EF cắt nhau tại trung điểm mỗi đường

OA = OC ( tính chất hình bình hành) ⇒ EF đi qua O

Vậy AC, BD, EF đồng quy tại O.


Bắt đầu thi ngay