- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
Bài 7: Toán 8 Hình bình hành
-
7168 lượt thi
-
29 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Các tứ giác ABCD, EFGH và hình vẽ bên dưới có phải là hình bình hành hay không?
Tứ giác ABCD là hình bình hành vì có cạnh đối AD // BC và AD = BC bằng 3 cạnh ô vuông.
Tứ giác EFGH là hình bình hành vì có các cạnh đối bằng nhau.
EH = FG, EF = HG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông
Câu 2:
Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng: DE = BF
Ta có: AB = CD (tính chất hình bình hành)
EB = 1/2 AB (gt)
FD = 1/2 CD (gt)
Suy ra: EB = FD (1)
Mà AB // CD (gt)
⇒ BE // FD (2)
Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ DE = BF (tính chất hình bình hành)
Câu 3:
Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác của góc C cắt AB ở N. Chứng minh rằng AMCN là hình bình hành.
Ta có: A = C (tính chất hình bình hành)
= 1/2 A ( Vì AM là tia phân giác của (BAD) )
= 1/2 C ( Vì CN là tia phân giác của (BCD) )
Suy ra: =
Do ABCD là hình bình hành nên AB // CD (gt)
Hay AN // CM (1)
Mà = (so le trong)
Suy ra: =
⇒ AM // CN (vì có cặp góc ở vị trí đồng vị bằng nhau) (2)
Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.
Câu 4:
Hình bên cho ABCD là hình bình hành. Chứng minh rằng AECF là hình bình hành.
Gọi O là'giao điểm của AC và BD, ta có:
OA = OC (tính chất hình bình hành) (1)
Xét hai tam giác vuông AEO và CFO, ta có:
(AEO) = (CFO) =
OA = OC (chứng minh trên)
(AOE) = (COF) (đối đỉnh)
Do đó AEO = CFO (cạnh huyền, góc nhọn)
⇒ OE = OF (2)
Từ (1) và (2) suy ra tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).
Câu 5:
Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Nối đường chéo AC.
Trong ABC ta có:
E là trung điểm của AB (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của ABC
⇒EF//AC và EF = 1/2 AC
(tính chất đường trung hình tam giác) (1)
Trong ADC ta có:
H là trung điểm của AD (gt)
G là trung điểm của DC (gt)
Nên HG là đường trung bình của ADC
⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
Câu 6:
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB, Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chứng minh rằng DE = EF = FB
Ta có: AB = CD (tính chất hình bình hành)
AK = 1/2 AB (gt)
CI = 1/2 CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
⇒ AI // CK
Trong ABE, ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)
Trong DCF, ta có:
I là trung điểm của DC (gt)
AI // CK hay IE // CF nên DE = EF (tính chất đường trung bình tam giác)
Suy ra: DE = EF = FB
Câu 7:
Tính các góc của hình bình hành ABCD biết: A =
Tứ giác ABCD là hình bình hành.
⇒ C = A = (tính chất hình bình hành)
A + B = (2 góc trong cùng phía bù nhau)
⇒ B = – =
D = B = (tính chất hình bình hành)
Câu 8:
Tính các góc của hình bình hành ABCD biết: A - B =
Tứ giác ABCD là hình bình hành.
⇒A + B = (2 góc trong cùng phía bù nhau)
A - B = (gt)
Suy ra: 2A = ⇒ A =
C = A = (tính chất hình bình hành)
B = A – = – =
D = B = (tính chất hình bình hành)
Câu 9:
Trong các tứ giác ở hình dưới đây, hình nào là hình bình hành.
* Tứ giác ABCD là hình bình hành vì AB // CD và AB = CD.
* Tứ giác IKMN có: I + K + N + M =
Suy ra: N = - (K + I + M) =
Ta có I = M = và K = N =
Suy ra IKMN là hình bình hành (tứ giác có các góc đối bằng nhau).
* Tứ giác EFGH không là hình bình hành vì có hai đường chéo không cắt nhau tại trung điểm mỗi đường.
Câu 10:
Chu vi hình bình hành ABCD bằng l0cm, chu vi tam giác ABD bằng 9cm. Tính độ dài BD.
Chu vì hình bình hành ABCD bằng 10cm nên (AB + AD).2 = 10(cm)
⇒ AB + AD = 10 : 2 = 5(cm)
Chu vi của ABD bằng:
AB + AD + BD = 9(cm)
⇒ BD = 9 - (AB + AD) = 9 - 5 = 4(cm)
Câu 11:
Hình bên dưới, cho ABCD là hình bình hành. Chứng minh rằng AE //CF.
Gọi O là giao điểm của AC và BD, ta có:
OB = OE + EB và OD = OF+ FD (1)
Lại có: EB = FD (giả thiết) (2)
OB = OD ( tính chất hình bình hành). (3)
Từ (1), (2),(3) suy ra: OE = OF
Suy ra tứ giác AECF là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ AE // CF.
Câu 12:
Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: EMNF là hình bình hành
+) Ta có:
AE = 1/2 AB; CF = 1/2. CD ( vì E và F lần lượt là trung điểm của AB, CD).
Và AB = CD (tính chất hình bình hành)
Suy ra: AE = CF
+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF
Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành
⇒ AF //CE hay EN // FM (1)
Xét tứ giác BFDE ta có:
AB // CD (gt) hay BE // DF
BE = 1/2 AB (gt)
DF = 1/2 CD (gt)
AB = CD (tính chất hình bình hành)
Suy ra: BE = DF
Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)
Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành)
Câu 13:
Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: Các đường thẳng AC, EF, MN đồng quy.
Gọi O là giao điểm của AC và EF
Tứ giác AECF là hình bình hành ⇒ OE = OF
Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Suy ra: MN đi qua trung điểm O của EF.
Vậy AC, EF, MN đồng quy tại O.
Câu 14:
Hình dưới cho ABCD là hình bình hành. Chứng minh rằng: EGFH là hình bình hành.
+) Ta có: AH + HD = AD
CG + GB = CB
Mà AD = CB ( vì ABCD là hình bình hành).
DH = GB ( giả thiết)
Suy ra: AH = CG.
Xét AEH và CFG:
AE = CF (gt)
A = C (tính chất hình bình hành)
AH = CG ( chứng minh trên).
Do đó: AEH = CFG (c.g.c)
⇒ EH = FG
Xét BEG và DFH, ta có:
BG = DH (gt)
B = D (tính chất hình bình hành)
BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )
Do đó: BEG = DFH (c.g.c) ⇒ EG = FH
Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)
Câu 15:
Hình dưới cho ABCD là hình bình hành. Chứng minh rằng: Các đường thẳng AC, BD, EF, GH đồng quy.
Gọi O là giao điểm của AC và EF
Xét tứ giác AECF, ta có: AB // CD (gt) hay AE // CF
AE = CF (gt)
Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)
⇒ O là trung điểm của AC và EF
Tứ giác ABCD là hình bình hành có O là trung điểm AC nên O cũng là trung điểm của BD.
Tứ giác EGFH là hình bình hành có O là trung điểm EF nên O cũng là trung điểm của GH.
Vậy AC, BD, EF, GH đồng quy tại O.
Câu 16:
Cho hình hình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA', BB', DD' là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA' = BB' + DD'
Gọi O là giao điểm của hai đường chéo AC và BD.
Kẻ OO' ⊥ xy
Ta có: BB' ⊥ xy (gt)
DD' ⊥ xy (gt)
Suy ra: BB // OO' // DD'
Tứ giác BB'D'D là hình thang .
OB = OD (t/chất hình bình hành)
Nên O'B' = O'D'
Do đó OO' là đường trung bình của hình thang BB'D'D
⇒ OO' = (BB' + DD') / 2 (tính chất đường trung hình hình thang) (1)
AA' ⊥ xy (gt)
OO' ⊥ xy (theo cách vẽ)
Suy ra: AA' // OO'
Trong ACA' tacó: OA = OC (tính chất hình bình hành)
OO' // AA' nên OO' là đường trung bình của ACA'
⇒ OO' = 1/2 AA' (tính chất đường trung bình của tam giác)
⇒ AA' = 2OO' (2)
Tử (1) và (2) suy ra: AA' = BB' + DD'
Câu 17:
Cho hình bình hành ABCD và đường thẳng xy không có điểm chung với hình bình hành. Gọi AA’; BB’; CC’, DD’ là các đường vuông góc kẻ từ A, B, C, D đến đường thẳng xy. Tìm mối liên hệ độ dài giữa AA', BB', CC', DD'
Gọi O là giao điểm của AC và BD
⇒ OA = OC, OB = OD (tính chất hình bình hành)
Kẻ OO' ⊥ xy
AA' ⊥ xy (gt)
CC' ⊥ xy (gt)
Suy ra: AA' // OO' // CC'
Tứ giác ACC'A' là hình thang có:
OA = OC (chứng minh trên)
OO' // AA' nên OO' là đường trung bình của hình thang ACC'A'.
⇒ OO' = (AA' + CC') / 2 (t/chất đường trung bình của hình thang) (1)
BB' ⊥ xy
DD' ⊥ xy (gt)
OO' ⊥ xy (gt)
Suy ra: BB'// OO' // DD'
Tứ giác BDD'B' là hình thang có:
OB = OD (Chứng minh trên)
OO' // BB' nên OO' là đường trung bình của hình thang BDD'B'.
⇒ OO' = (BB' + DD') / 2 (tính chất đường trung bình của hình thang) (2)
Từ (1) và (2) => AA' + CC' = BB + DD'
Câu 18:
Cho hình bình hành ABCD có A = α > 90o. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Tính góc (EAF)
Vì (BAD) + (BAE) + (EAF) + (FAD) =
⇒ (EAF) = – ((BAD) + (BAE) + (FAD) )
Mà (BAD) = (gt)
(BAE) = (ΔBAE đều)
(FAD) = (ΔFAD đều)
Nên (EAF) = – ( + + ) = –
Câu 19:
Cho hình bình hành ABCD có A = > . Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Chứng minh rằng tam giác CEF là tam giác đều.
Ta có:
(BAD) + ∠(ADC) = (hai góc trong cùng phía bù nhau)
⇒ (ADC) = - (BAD) = –
(CDF) = (ADC) + (ADF) = -
Suy ra: (CDF) = (EAF)
Xét AEF và DCF: AF = DF ( vì ADF đều)
AE = DC (vì cùng bằng AB)
(CDF) = (EAF) (chứng minh trên)
Do đó: AEF = DCF (c.g.c) ⇒ EF = CF (1)
(CBE) = (ABC) +
Xét ΔBCE và ΔDFC: BE = CD ( vì cùng bằng AB)
(CBE) = (CDF) =
BC = DF (vì cùng bằng AD)
Do đó BCE = DFC (c.g.c) ⇒ CE = CF (2)
Từ (1) và (2) suy ra: EF = CF = CE
Vậy ECF đều.
Câu 20:
Cho tam giác ABC. Ở phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng: IA = BC
(BAD) + (BAC) + (DAE) + (EAC) =
Lại có: (BAD) = , (EAC) =
Suy ra: (BAC) + (DAE) = (1)
AE // DI (gt)
⇒ (ADI) + (DAE) = (2 góc trong cùng phía)
Từ (1) và (2) suy ra: (BAC) = (ADI)
Xét ABC và DAI có:
AB = AD ( vì tam giác ABD vuông cân).
AC = DI ( = AE)
(BAC) = (ADI) ( chứng minh trên)
Suy ra: ABC = DAI (c.g.c) ⇒ IA = BC
Câu 21:
Cho tam giác ABC. Ở phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng: IA ⊥ BC
ABC = DAI (chứng minh trên) ⇒ (ABC) = (3)
Gọi giao điểm IA và BC là H.
Ta có: + (BAD) + = (kề bù)
Mà (BAD) = (gt) ⇒ + = (4)
Từ (3) và (4) suy ra: (ABC)+ =
Trong AHB ta có: (AHB) + (ABC)+ =
Suy ra (AHB) = ⇒ AH ⊥ BC hay IA ⊥ BC
Câu 22:
Dựng hình bình hành ABCD biết: AB = 2cm, AD = 3cm, A =
Cách dựng
- Dựng ΔABD có AB = 2cm, ∠A = 110o, AD = 3cm
- Dựng tia Bx //AD
- Dựng tia Dy // AB và Dy cắt Bx tại C
Ta có hình bình hành ABCD cần dựng
Chứng minh
AB //CD, AD // BC nên tứ giác ABCD là hình bình hành.
Ta lại có: AB = 2cm, A = , AD = 3cm.
Bài toán có một nghiệm hình.
Câu 23:
Dựng hình bình hành ABCD biết: AC = 4cm, BD = 5cm, (BOC) =
Cách dựng
- Dựng OBC có OC = 2cm, OB = 2,5 cm, (BOC) =
- Trên tia đối tia OC lấy điểm A sao cho OA = OC = 2cm
- Trên tia đối tia OB lấy điểm D sao cho OD = OB =2,5cm
Nối AB, BC, CD, AD ta có hình bình hành ABCD cần dựng
Chứng minh
Tứ giác ABCD có OA = OC, OB = OD nên nó là hình bình hành vì có 2 đường chéo cắt nhau tại trung điểm mỗi đường.
Có AC = 4cm , BD = 5cm, (BOC) =
Bài toán có một nghiệm hình
Câu 24:
Cho ba điểm A, B, C trên giấy kẻ ô vuông ở hình bên. Hãy vẽ điểm thứ tư M sao cho A, B,C, M là 4 đỉnh của một hình bình hành.
- Nếu hình bình hành nhận AC làm đường chéo vì AB là đường chéo hình vuông có 2 ô vuông nên C là đường chéo hình vuông cạnh 2 ô vuông và A, nằm trên một nửa mặt phẳng bờ BC ta có hình bình hành ABC
- Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông, điểm B cách điểm là ba ô vuông và trên một nửa mặt phẳng bờ AB ta có hình bình hành ABC
- Nếu hình bình hành nhận AB làm đường chéo thì điểm cách điểm B ba ô vuông, và A nằm trên cùng một nửa mặt phẳng bờ BC ta có hình bình hành ACB
Câu 25:
Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF
Cách dựng:
- Dựng đường phân giác AD của góc BAC.
- Qua D dựng đường thẳng song song AB cắt AC tại F.
- Qua F dựng đường thẳng song song với BC cắt AB tại E.
Ta có điểm E, F cần dựng.
Chứng minh:
DF // AB
⇒ = (so le trong)
Lại có: = ( vì AD là tia phân giác của góc BAC).
Suy ra: =
⇒ AFD cân tại F ⇒ AF = DF (l)
DF // AB hay DF // BE
EF // BC hay EF // BD
Tứ giác BDFE là hình bình hành ⇒ BE = DF (2)
Từ (1) và (2) suy ra: AF = BE.
Câu 26:
Tứ giác ABCD là hình bình hành nếu:
A. AB = CD;
B. AD = BC;
C. AB // CD và AD = BC;
D. AB = CD và AD = BC.
Hãy chọn phương án đúng.
Chọn D
Câu 27:
Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng: AE song song CF
Ta có: OB = OD (tính chất hình bình hành)
OE = 1/2 OD (gt)
OF = 1/2 OB (gt)
Suy ra: OE = OF
Xét tứ giác AECF, ta có:
OE = OF (chứng minh trên)
OA = OC (vì ABCD là hình bình hành)
Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE // CF
Câu 28:
Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng: DK = 1/2 KC
Kẻ OM // AK
Trong CAK ta có:
OA = OC ( chứng minh trên)
OM // AK ( theo cách vẽ)
⇒ CM = MK (tính chất đường trung bình của tam giác) (1)
Trong DMO ta có:
DE = EO (gt)
EK // OM (vì AK // OM)
⇒ DK = KM (tính chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: DK = KM = MC ⇒ DK = 1/2 KC
Câu 29:
Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.
Gọi O là giao điểm của hai đường chéo AC và BD.
Xét tứ giác AECF:
AB // CD (gt)
⇒ AE // CF
AE = CF (gt)
Suy ra: Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)
⇒ AC và EF cắt nhau tại trung điểm mỗi đường
OA = OC ( tính chất hình bình hành) ⇒ EF đi qua O
Vậy AC, BD, EF đồng quy tại O.